Package Summary

Tags No category tags.
Version 1.1.3
License BSD
Build type CATKIN

Repository Summary

Checkout URI
VCS Type git
VCS Version master
Last Updated 2020-03-25
CI status Continuous Integration
Package Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Package Description

The rsm_additions package includes plugins for the Robot Statemachine and exemplary launch files

Additional Links


  • Marco Steinbrink


  • Marco Steinbrink

RSM Additions

Additions to the RSM including all mandatory plugin states and a plugin routine state. Also an additional service provider is included.


This package implements plugins for the Calculate Goal State, the Navigation State and the Mapping State. Furthermore, the Reversing Routine State is an optional routine state plugin. The Additions Service Provider handles the data to be transferred between these plugins.

Calculate Goal State

The Calculate Goal State interfaces the ROS package explore lite, subscribes to it's visualization topic that shows frontiers on a 2D map and extracts the closest frontier center point to the robot as navigation goal. Therefore, it retrieves the robot's pose and calculates it's distance to each of the frontier's center points. Also, previously failed goals are disregarded as potential navigation goals. If it fails to find a suitable goal for exploration, it returns an error message and transitions back to the Idle State

To have explore lite running without directly sending commands to the navigation stack, a mock action server is constructed in the Additions Service Provider that leads the exploration to believe the goals are accepted. Otherwise it does not start to to calculate frontiers. Furthermore, explore lite is launched with progress_timeout set to 3600 seconds which gives the robot ten hours to move, otherwise the exploration stops and needs to be relaunched.

The Navigation State realizes an interface to the navigation ROS package. It forwards received goals to the navigation stack and also gets feedback from it regarding the progress. If it fails, the goal is added to the failed goals list. If it succeeds, the failed goal list will be reset.

When standing still for too long, it transitions to the Idle State. Reaching the goal will initiate a transition to the Mapping State or the particular routine state if there is one available. If not, Waypoint Following State is called. After reaching a navigation goal provided by RViz and if waypoint following has ended, it transitions to Idle State.

Reverse driving is realised by running two navigation stacks, one for forward driving and one for reverse driving. This is explained in more detail later. For reverse driving the robot also features a transform to a reverse base frame. When driving in reverse, all output command velocities are negated by the Additions Service Provider. If the reverse mode is activated or deactivated, the goal is cancelled and sent to the reverse navigation.

Mapping State

There are two mapping plugins included. The first state is just a dummy state while the latter is swiveling a simulated kinect camera from left to right around a revoluting joint.

Mapping Dummy State

The Mapping Dummy State is just transitioning back to the Calculate Goal State as specific mapping procedures are only relevant for the particular robot.

Kinect Mapping State

Swivels a kinect camera mounted on a joint revoluting around the z-axis from left to right and back to it's centered position to map the surrounding area. This only works for the implemented Gazebo simulation as it publishes commands to the joint the kinect is mounted on.

Reversing Routine State

A Routine State called Reversing Routine is also include and toggles the reverse mode when the routine is executed. This means the robot is driving in reverse when it was going forward before and vice versa.

Additions Service Provider

This data handler class retrieved the frontiers published by explore lite for visualization, extracts each frontier's center and republishes them as possible exploration goals. In case, the exploration mode is set to Interrupt, it is also checked if the current navigation goal is still in the list of exploration goals. If not, it is published that the goal is obsolete. A tolerance for comparing these positions can be set with a parameter.

Furthermore, goals that could not be reached during exploration, here named as failed goals, are saved and published. These serve as a way of blacklisting goals. This normally happens, when the navigation finishes.

For driving in reverse mode, the velocity commands issued by the reverse navigation stack are also subscribed to and republished with negated linear velocities. It also provides a service that is called when reverse mode should be activated. Since nothing needs to be changed in the configuration to change to reverse mode, this service just replies that it was successful.

If the kinect mapping is interrupted, a service is provided that moves the camera back to it's centered position while the RSM is continuing.


An example to move a robot backwards and forwards with the navigation stack.

Reverse robot movement with navigation stack

The following code needs to be included in your launch file (or the nodes launched respectively) to allow the robot to navigate in forward and reverse depending on the set mode:

<node pkg="move_base" type="move_base" respawn="false" name="move_base" output="screen">
        <param name="global_costmap/robot_base_frame" value="$(arg robot_frame)" />
        <param name="local_costmap/robot_base_frame" value="$(arg robot_frame)" />
        <remap from="/cmd_vel" to="$(arg autonomy_cmd_vel_topic)" />

    <node pkg="move_base" type="move_base" respawn="false" name="move_base_reverse" output="screen">
        <param name="global_costmap/robot_base_frame" value="$(arg robot_frame)_reverse" />
        <param name="local_costmap/robot_base_frame" value="$(arg robot_frame)_reverse" />
        <remap from="/cmd_vel" to="$(arg autonomy_cmd_vel_topic)_reverse" />
        <remap from="move_base/goal" to="move_base_reverse/goal" />
        <remap from="move_base/cancel" to="move_base_reverse/cancel" />
        <remap from="move_base/feedback" to="move_base_reverse/feedback" />
        <remap from="move_base/status" to="move_base_reverse/status" />
        <remap from="move_base/result" to="move_base_reverse/result" />

    <node pkg="tf" type="static_transform_publisher" name="base_footprint_reverse" args="0 0 0 3.1415 0 0 (arg robot_frame) $(arg robot_frame)_reverse 10" />

Replace the dots with the usual parameters for the navigation stack. Both packages share the same parameters but for the robot base frame. To use a particular navigation stack, initiate it like in this tutorial and call the action for forward movement with "move_base" and for reverse movement with "move_base_reverse".



An additional data handler class that adds services to interface the exploration lite and navigation packages.

Published Topics

<_autonomy_cmd_vel_topic> (std_msgs/String)
Topic name for the autonomy command velocity

explorationGoals (geometry_msgs/PoseArray)
List of all currently available exploration goals

failedGoals (geometry_msgs/PoseArray)
List of all previously failed goals

kinect_controller/command (std_msgs/Float64)
Position the kinect revolute joint will move to

goalObsolete (std_msgs/Bool)
Information if the current goal is still viable (only active is exploration mode is set to Interrupt)

Subscribed Topics

_reverse (std_msgs/String)
Topic name for the autonomy command velocity in reverse mode

explore/frontiers (visualization_msgs/MarkerArray)
All frontier grid cells as points and closest frontier points as spheres

explorationMode (std_msgs/Bool)
The current exploration mode (true: interrupt, false: finish)

explorationGoalStatus (rsm_msgs/GoalStatus)
The currently active goal's status and pose


setNavigationToReverse (std_srvs/SetBool)
Needs to be implemented for reverse mode, just returns success


~update_frequency (float, default: 20)
Update rate in Hz

~autonomy_cmd_vel_topic (string, default: "autonomy/cmd_vel")
Topic name for the autonomy command velocity

~calculate_goal_plugin (string, default: "rsm::CalculateGoalPlugin")
Sets the plugin's name for the calculate goal state.

~navigation_plugin (string, default: "rsm::NavigationPlugin")
Sets the plugin's name for the navigation state.

~mapping_plugin (string, default: "rsm::MappingDummyPlugin")
Sets the plugin's name for the mapping state.

~exploration_goal_tolerance (double, default: 0.05)
Distance in all directions in meters that the robot's current position can differ from an exploration goal to still count it as reached


Changelog for package rsm_additions

1.1.3 (2019-08-29)

  • Added all dependencies to CMakeLists and package.xml, that were missing previously
  • Contributors: MarcoStb1993

1.1.2 (2019-08-28)

1.1.1 (2019-08-05)

  • added changelogs
  • Fixed some dependencies for the new names
  • Changed package names, this time for real
  • Contributors: MarcoStb1993

Wiki Tutorials

See ROS Wiki Tutorials for more details.

Source Tutorials

Not currently indexed.

Launch files

  • launch/simulation_stdr.launch
    • Simulation of Statemachine with GMapping and Frontier Exploration
      • robot_frame [default: robot0]
      • autonomy_cmd_vel_topic [default: /robot0/autonomy/cmd_vel]
      • teleoperation_cmd_vel_topic [default: /robot0/teleoperation/cmd_vel]
      • cmd_vel_topic [default: /robot0/cmd_vel]
      • joystick_used [default: true]
      • joystick_topic [default: /joy]
      • calculate_goal_plugin [default: rsm::CalculateGoalState]
      • navigation_plugin [default: rsm::NavigationState]
      • mapping_plugin [default: rsm::MappingDummyState]
      • waypoint_routines [default: ['Reversing']]
      • rviz [default: false]
      • joystick_used [default: $(arg joystick_used)]
      • joystick_topic [default: $(arg joystick_topic)]
  • launch/gazebo.launch
    • Gazebo launch files for world and robot
      • world_file [default: $(find husky_gazebo)/worlds/]
      • robot_namespace [default: /]
      • x [default: 0.0]
      • y [default: 0.0]
      • z [default: 0.0]
      • yaw [default: 0.0]
      • urdf_extras [default: $(optenv HUSKY_URDF_EXTRAS)]
      • config_extras [default: $(eval optenv('HUSKY_CONFIG_EXTRAS', find('husky_control') + '/config/empty.yaml'))]
  • launch/simulation_gazebo.launch
    • Simulation of Husky UGV in Gazebo running Robot Statemachine with GMapping and Explore Lite
      • world [default: $(find husky_gazebo)/worlds/]
      • robot_frame [default: base_footprint]
      • autonomy_cmd_vel_topic [default: /autonomy/cmd_vel]
      • teleoperation_cmd_vel_topic [default: /teleoperation/cmd_vel]
      • cmd_vel_topic [default: /cmd_vel]
      • joystick_used [default: true]
      • joystick_topic [default: /joy]
      • calculate_goal_plugin [default: rsm::CalculateGoalState]
      • navigation_plugin [default: rsm::NavigationState]
      • mapping_plugin [default: rsm::KinectMappingState]
      • waypoint_routines [default: ['Reversing']]
      • rviz [default: false]
      • joystick_used [default: $(arg joystick_used)]
      • joystick_topic [default: $(arg joystick_topic)]


No message files found.


No service files found


Recent questions tagged rsm_additions at