![]() |
hatchbed_common package from hatchbed_common repohatchbed_common |
Package Summary
Tags | No category tags. |
Version | 0.1.2 |
License | BSD |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Checkout URI | https://github.com/hatchbed/hatchbed_common.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-04-06 |
Dev Status | DEVELOPED |
CI status | No Continuous Integration |
Released | RELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Package Description
Additional Links
Maintainers
- Marc Alban
Authors
hatchbed_common
Common Hatchbed C++ utility code for ROS, such registering and handling updates to ros parameters.
Param Handler
The functionality and design are similar to ddynamic_reconfigure and swri_roscpp in that dynamic parameters can be created and managed programatically without needing to define a .cfg file.
The objectives are to:
- minimize boilerplate code for defining and accessing parameters
- support code clarity when defining parameters
- provide a similar interface for both static and dynamic parameters
- provide a similar interface for both ros1 and ros2
- add minor quality of life improvements like:
- logging parameter values at startup and on change
- enforcing range constraints
- publishing static (readonly) parameters to dynamic reconfig for easier runtime inspection
API
The ParamHandler
is a convenience class for managing static and dynamic ROS
parameters. It will automatically send parameter config description messages
when new parameters are registered with the handler and will handle receiving
and sending parameter updates.
Both static and dynamic parameters are included in the config description, but static parameters will be labeled as ‘(readonly)’ and prevent any updates that might come in for them.
Registering Parameters
When registering a new parameter the param handler will return a parameter object which can be used to access the parameter value in a thread safe way.
All parameters require a name, default value, and description.
Optionally, a pointer to an existing variable can be passed in when registering a parameter. In this case that variable is used to store the parameter value, but access to it is not protected, so should only be used in single threaded applications.
When registering a parameter it is possible to chain additional configuration items to the parameter, such as:
-
.callback()
: provide a callback function when the parameter changes, implies.dynamic()
-
.dynamic()
: allow the parameter to by modified with dynamic reconfig -
.enum()
: specify an enumeration for integer parameters -
.max()
: specify a maximum value for numeric parameters -
.min()
: specify a minimun value for numeric parameters -
.step()
: specify a step size for numeric parameters
Once the parameter has been configured, it’s necessary to call the .declare()
method.
Static Parameters
For static parameters it’s generally sufficient to just immediately store the
value using the .value()
method.
auto node = std::make_shared<rclcpp::Node>("param_handler_example");
hatchbed_common::ParamHandler params(node);
// integer parameter
int num_tries = params.param("num_tries", 1, "Number of tries").min(1).max(50).declare().value();
// string parameter
std::string frame_id = params.param("frame_id", std::string("base_link"), "TF frame").declare().value();
// bool parameter
bool debug = params.param("debug", false, "Enable debug mode").value();
// double parameter
double threshold = params.param("threshold", 0.75, "Threshold value").min(0.0).max(1.0).declare().value();
// enum parameter
int mode = params.param("mode", 0, "Operating mode").enumerate({
{0, "Default", "Default operating mode"},
{1, "Advanced", "Advanced operating mode"},
{20, "Legacy", "Legacy operating mode"}}).declare().value();
Dynamic Parameters
For dynamic parameters, there are several options.
In a single threaded use case it’s possible to pass in a pointer to where the parameter should be stored:
int num_tries = 0;
params.param(&num_tries, "num_tries", 1, "Number of tries").min(1).max(50).dynamic().declare();
while (rclcpp::ok()) {
process.execute(num_tries);
rclcpp::spin_some(node);
}
Here the num_tries
int variable will be automatically updated.
When multi-threading is involved the above method is not recommended. Instead the parameter object returned by the handler should be used to ensure thread-safe data access.
auto num_tries = params.param("num_tries", 1, "Number of tries").min(1).max(50).dynamic().declare();
std::thread t([&](){
while (rclcpp::ok()) {
process.execute(num_tries.value());
}
});
rclcpp::spin(node);
t.join();
The different parameter types are:
hatchbed_common::BoolParameter
hatchbed_common::DoubleParameter
hatchbed_common::IntParameter
hatchbed_common::StringParameter
In addition to accessing the current value, the parameter object can be used to
publish an update to the parameter using the .update()
method.
In some cases a direct callback may be desired to notify the process that the value has changed:
params.param("num_tries", 1, "Number of tries").min(1).max(50).callback([](int value){
process.setNumTries(value);
}).declare();
while (rclcpp::ok()) {
process.exectute();
rclcpp::spin_some(node);
}
Finally, it’s possible to register a callback to notify the process that any of the registered dynamic parameters has been updated:
params.setCallback([]() {
// do something
});
These different approaches are not mutually exclusive and can be used in concert.
Differences Between ROS1 and ROS2
- ros2:
.declare()
must be called after configuring a parameter - ros2: there is no
.group()
configuration - ros2: parameters are ordered alphabetically in dynamic_reconfigure
- ros2:
.register_verbose_logging_param()
helper function added to enable dynamic parameter for log-devel - ros1: there is no
.step()
configuration for numeric parameters - ros1: parameters are ordered in configuration order in dynamic_reconfigure
## Simple Profiler
The simple_profiler.h
header file provides a simple, low overhead, time profiling utility.
// enable/disable profiling.
::profile::set_enabled(true);
// start a new named scope at current level
profile_scope("new_scope");
// do work
// open a new scope layer
::profile::push();
// start a child scope
profile_scope("child_scope1");
// do work
// start a second child scope, stopping previous scope: "child_scope1".
profile_scope("child_scope2");
// do work
// close the current scope layer, stopping any open child scope
::profile::pop();
// do work
// start a new scope, stopping "new_scope".
profile_scope("new_scope2");
// do work
// close any open scopes and increment count
::profile::finalize();
// print timings
std::cout << ::profile::get();
Profile scopes will stop automatically when:
- going out of the scope they were executed in
- a new scope on the same level is opened
- the current scope level is closed with a
::profile::pop()
-
::profile::finalize()
is called
Calling ::profile::finalize()
will increment the timing count for tracking the average timings
over multiple iterations.
Calling ::profile::set_enabled(true)
can dynamically enabled or disable the profiling, though
even with disabled a single comparison is made in each call to check the state of this flag. Most of
this small overhead can be removed by setting the -DPROFILE_DISABLED
compiler flag.
Profiling is performed in a thread_local manner, so it is thread-safe, but timings aren’t aggregated across threads.
The timing profile is stream formatted like this:
timing profile (ms) elapsed avg
=====================================
handle_points ........ 282.22 239.91
| get_transforms ....... 0.05 0.05
| transform ............ 2.33 2.24
| fit ................ 279.70 237.48
| | sample ............. 3.21 3.07
| | index .............. 3.53 3.16
| | init ............... 0.41 0.35
| | setup ............. 28.05 25.90
| |_solve ............ 205.69 168.50
|_publish .............. 0.01 0.01
Changelog for package hatchbed_common
0.1.2 (2025-04-06)
- Add simple timing profiler utility.
- Add global callback for any changes to registered dynamic parameter.
- Contributors: Marc Alban
0.1.1 (2024-11-24)
- Contributors: Marc Alban
Wiki Tutorials
Package Dependencies
Deps | Name |
---|---|
ament_cmake | |
ament_lint_auto | |
ament_lint_common | |
rclcpp |
System Dependencies
Dependant Packages
Launch files
Messages
Services
Plugins
Recent questions tagged hatchbed_common at Robotics Stack Exchange
![]() |
hatchbed_common package from hatchbed_common repohatchbed_common |
Package Summary
Tags | No category tags. |
Version | 0.1.2 |
License | BSD |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Checkout URI | https://github.com/hatchbed/hatchbed_common.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-04-06 |
Dev Status | DEVELOPED |
CI status | No Continuous Integration |
Released | RELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Package Description
Additional Links
Maintainers
- Marc Alban
Authors
hatchbed_common
Common Hatchbed C++ utility code for ROS, such registering and handling updates to ros parameters.
Param Handler
The functionality and design are similar to ddynamic_reconfigure and swri_roscpp in that dynamic parameters can be created and managed programatically without needing to define a .cfg file.
The objectives are to:
- minimize boilerplate code for defining and accessing parameters
- support code clarity when defining parameters
- provide a similar interface for both static and dynamic parameters
- provide a similar interface for both ros1 and ros2
- add minor quality of life improvements like:
- logging parameter values at startup and on change
- enforcing range constraints
- publishing static (readonly) parameters to dynamic reconfig for easier runtime inspection
API
The ParamHandler
is a convenience class for managing static and dynamic ROS
parameters. It will automatically send parameter config description messages
when new parameters are registered with the handler and will handle receiving
and sending parameter updates.
Both static and dynamic parameters are included in the config description, but static parameters will be labeled as ‘(readonly)’ and prevent any updates that might come in for them.
Registering Parameters
When registering a new parameter the param handler will return a parameter object which can be used to access the parameter value in a thread safe way.
All parameters require a name, default value, and description.
Optionally, a pointer to an existing variable can be passed in when registering a parameter. In this case that variable is used to store the parameter value, but access to it is not protected, so should only be used in single threaded applications.
When registering a parameter it is possible to chain additional configuration items to the parameter, such as:
-
.callback()
: provide a callback function when the parameter changes, implies.dynamic()
-
.dynamic()
: allow the parameter to by modified with dynamic reconfig -
.enum()
: specify an enumeration for integer parameters -
.max()
: specify a maximum value for numeric parameters -
.min()
: specify a minimun value for numeric parameters -
.step()
: specify a step size for numeric parameters
Once the parameter has been configured, it’s necessary to call the .declare()
method.
Static Parameters
For static parameters it’s generally sufficient to just immediately store the
value using the .value()
method.
auto node = std::make_shared<rclcpp::Node>("param_handler_example");
hatchbed_common::ParamHandler params(node);
// integer parameter
int num_tries = params.param("num_tries", 1, "Number of tries").min(1).max(50).declare().value();
// string parameter
std::string frame_id = params.param("frame_id", std::string("base_link"), "TF frame").declare().value();
// bool parameter
bool debug = params.param("debug", false, "Enable debug mode").value();
// double parameter
double threshold = params.param("threshold", 0.75, "Threshold value").min(0.0).max(1.0).declare().value();
// enum parameter
int mode = params.param("mode", 0, "Operating mode").enumerate({
{0, "Default", "Default operating mode"},
{1, "Advanced", "Advanced operating mode"},
{20, "Legacy", "Legacy operating mode"}}).declare().value();
Dynamic Parameters
For dynamic parameters, there are several options.
In a single threaded use case it’s possible to pass in a pointer to where the parameter should be stored:
int num_tries = 0;
params.param(&num_tries, "num_tries", 1, "Number of tries").min(1).max(50).dynamic().declare();
while (rclcpp::ok()) {
process.execute(num_tries);
rclcpp::spin_some(node);
}
Here the num_tries
int variable will be automatically updated.
When multi-threading is involved the above method is not recommended. Instead the parameter object returned by the handler should be used to ensure thread-safe data access.
auto num_tries = params.param("num_tries", 1, "Number of tries").min(1).max(50).dynamic().declare();
std::thread t([&](){
while (rclcpp::ok()) {
process.execute(num_tries.value());
}
});
rclcpp::spin(node);
t.join();
The different parameter types are:
hatchbed_common::BoolParameter
hatchbed_common::DoubleParameter
hatchbed_common::IntParameter
hatchbed_common::StringParameter
In addition to accessing the current value, the parameter object can be used to
publish an update to the parameter using the .update()
method.
In some cases a direct callback may be desired to notify the process that the value has changed:
params.param("num_tries", 1, "Number of tries").min(1).max(50).callback([](int value){
process.setNumTries(value);
}).declare();
while (rclcpp::ok()) {
process.exectute();
rclcpp::spin_some(node);
}
Finally, it’s possible to register a callback to notify the process that any of the registered dynamic parameters has been updated:
params.setCallback([]() {
// do something
});
These different approaches are not mutually exclusive and can be used in concert.
Differences Between ROS1 and ROS2
- ros2:
.declare()
must be called after configuring a parameter - ros2: there is no
.group()
configuration - ros2: parameters are ordered alphabetically in dynamic_reconfigure
- ros2:
.register_verbose_logging_param()
helper function added to enable dynamic parameter for log-devel - ros1: there is no
.step()
configuration for numeric parameters - ros1: parameters are ordered in configuration order in dynamic_reconfigure
## Simple Profiler
The simple_profiler.h
header file provides a simple, low overhead, time profiling utility.
// enable/disable profiling.
::profile::set_enabled(true);
// start a new named scope at current level
profile_scope("new_scope");
// do work
// open a new scope layer
::profile::push();
// start a child scope
profile_scope("child_scope1");
// do work
// start a second child scope, stopping previous scope: "child_scope1".
profile_scope("child_scope2");
// do work
// close the current scope layer, stopping any open child scope
::profile::pop();
// do work
// start a new scope, stopping "new_scope".
profile_scope("new_scope2");
// do work
// close any open scopes and increment count
::profile::finalize();
// print timings
std::cout << ::profile::get();
Profile scopes will stop automatically when:
- going out of the scope they were executed in
- a new scope on the same level is opened
- the current scope level is closed with a
::profile::pop()
-
::profile::finalize()
is called
Calling ::profile::finalize()
will increment the timing count for tracking the average timings
over multiple iterations.
Calling ::profile::set_enabled(true)
can dynamically enabled or disable the profiling, though
even with disabled a single comparison is made in each call to check the state of this flag. Most of
this small overhead can be removed by setting the -DPROFILE_DISABLED
compiler flag.
Profiling is performed in a thread_local manner, so it is thread-safe, but timings aren’t aggregated across threads.
The timing profile is stream formatted like this:
timing profile (ms) elapsed avg
=====================================
handle_points ........ 282.22 239.91
| get_transforms ....... 0.05 0.05
| transform ............ 2.33 2.24
| fit ................ 279.70 237.48
| | sample ............. 3.21 3.07
| | index .............. 3.53 3.16
| | init ............... 0.41 0.35
| | setup ............. 28.05 25.90
| |_solve ............ 205.69 168.50
|_publish .............. 0.01 0.01
Changelog for package hatchbed_common
0.1.2 (2025-04-06)
- Add simple timing profiler utility.
- Add global callback for any changes to registered dynamic parameter.
- Contributors: Marc Alban
0.1.1 (2024-11-24)
- Contributors: Marc Alban
Wiki Tutorials
Package Dependencies
Deps | Name |
---|---|
ament_cmake | |
ament_lint_auto | |
ament_lint_common | |
rclcpp |
System Dependencies
Dependant Packages
Name | Deps |
---|---|
opensw_ros |
Launch files
Messages
Services
Plugins
Recent questions tagged hatchbed_common at Robotics Stack Exchange
![]() |
hatchbed_common package from hatchbed_common repohatchbed_common |
Package Summary
Tags | No category tags. |
Version | 0.1.2 |
License | BSD |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Checkout URI | https://github.com/hatchbed/hatchbed_common.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-04-06 |
Dev Status | DEVELOPED |
CI status | No Continuous Integration |
Released | RELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Package Description
Additional Links
Maintainers
- Marc Alban
Authors
hatchbed_common
Common Hatchbed C++ utility code for ROS, such registering and handling updates to ros parameters.
Param Handler
The functionality and design are similar to ddynamic_reconfigure and swri_roscpp in that dynamic parameters can be created and managed programatically without needing to define a .cfg file.
The objectives are to:
- minimize boilerplate code for defining and accessing parameters
- support code clarity when defining parameters
- provide a similar interface for both static and dynamic parameters
- provide a similar interface for both ros1 and ros2
- add minor quality of life improvements like:
- logging parameter values at startup and on change
- enforcing range constraints
- publishing static (readonly) parameters to dynamic reconfig for easier runtime inspection
API
The ParamHandler
is a convenience class for managing static and dynamic ROS
parameters. It will automatically send parameter config description messages
when new parameters are registered with the handler and will handle receiving
and sending parameter updates.
Both static and dynamic parameters are included in the config description, but static parameters will be labeled as ‘(readonly)’ and prevent any updates that might come in for them.
Registering Parameters
When registering a new parameter the param handler will return a parameter object which can be used to access the parameter value in a thread safe way.
All parameters require a name, default value, and description.
Optionally, a pointer to an existing variable can be passed in when registering a parameter. In this case that variable is used to store the parameter value, but access to it is not protected, so should only be used in single threaded applications.
When registering a parameter it is possible to chain additional configuration items to the parameter, such as:
-
.callback()
: provide a callback function when the parameter changes, implies.dynamic()
-
.dynamic()
: allow the parameter to by modified with dynamic reconfig -
.enum()
: specify an enumeration for integer parameters -
.max()
: specify a maximum value for numeric parameters -
.min()
: specify a minimun value for numeric parameters -
.step()
: specify a step size for numeric parameters
Once the parameter has been configured, it’s necessary to call the .declare()
method.
Static Parameters
For static parameters it’s generally sufficient to just immediately store the
value using the .value()
method.
auto node = std::make_shared<rclcpp::Node>("param_handler_example");
hatchbed_common::ParamHandler params(node);
// integer parameter
int num_tries = params.param("num_tries", 1, "Number of tries").min(1).max(50).declare().value();
// string parameter
std::string frame_id = params.param("frame_id", std::string("base_link"), "TF frame").declare().value();
// bool parameter
bool debug = params.param("debug", false, "Enable debug mode").value();
// double parameter
double threshold = params.param("threshold", 0.75, "Threshold value").min(0.0).max(1.0).declare().value();
// enum parameter
int mode = params.param("mode", 0, "Operating mode").enumerate({
{0, "Default", "Default operating mode"},
{1, "Advanced", "Advanced operating mode"},
{20, "Legacy", "Legacy operating mode"}}).declare().value();
Dynamic Parameters
For dynamic parameters, there are several options.
In a single threaded use case it’s possible to pass in a pointer to where the parameter should be stored:
int num_tries = 0;
params.param(&num_tries, "num_tries", 1, "Number of tries").min(1).max(50).dynamic().declare();
while (rclcpp::ok()) {
process.execute(num_tries);
rclcpp::spin_some(node);
}
Here the num_tries
int variable will be automatically updated.
When multi-threading is involved the above method is not recommended. Instead the parameter object returned by the handler should be used to ensure thread-safe data access.
auto num_tries = params.param("num_tries", 1, "Number of tries").min(1).max(50).dynamic().declare();
std::thread t([&](){
while (rclcpp::ok()) {
process.execute(num_tries.value());
}
});
rclcpp::spin(node);
t.join();
The different parameter types are:
hatchbed_common::BoolParameter
hatchbed_common::DoubleParameter
hatchbed_common::IntParameter
hatchbed_common::StringParameter
In addition to accessing the current value, the parameter object can be used to
publish an update to the parameter using the .update()
method.
In some cases a direct callback may be desired to notify the process that the value has changed:
params.param("num_tries", 1, "Number of tries").min(1).max(50).callback([](int value){
process.setNumTries(value);
}).declare();
while (rclcpp::ok()) {
process.exectute();
rclcpp::spin_some(node);
}
Finally, it’s possible to register a callback to notify the process that any of the registered dynamic parameters has been updated:
params.setCallback([]() {
// do something
});
These different approaches are not mutually exclusive and can be used in concert.
Differences Between ROS1 and ROS2
- ros2:
.declare()
must be called after configuring a parameter - ros2: there is no
.group()
configuration - ros2: parameters are ordered alphabetically in dynamic_reconfigure
- ros2:
.register_verbose_logging_param()
helper function added to enable dynamic parameter for log-devel - ros1: there is no
.step()
configuration for numeric parameters - ros1: parameters are ordered in configuration order in dynamic_reconfigure
## Simple Profiler
The simple_profiler.h
header file provides a simple, low overhead, time profiling utility.
// enable/disable profiling.
::profile::set_enabled(true);
// start a new named scope at current level
profile_scope("new_scope");
// do work
// open a new scope layer
::profile::push();
// start a child scope
profile_scope("child_scope1");
// do work
// start a second child scope, stopping previous scope: "child_scope1".
profile_scope("child_scope2");
// do work
// close the current scope layer, stopping any open child scope
::profile::pop();
// do work
// start a new scope, stopping "new_scope".
profile_scope("new_scope2");
// do work
// close any open scopes and increment count
::profile::finalize();
// print timings
std::cout << ::profile::get();
Profile scopes will stop automatically when:
- going out of the scope they were executed in
- a new scope on the same level is opened
- the current scope level is closed with a
::profile::pop()
-
::profile::finalize()
is called
Calling ::profile::finalize()
will increment the timing count for tracking the average timings
over multiple iterations.
Calling ::profile::set_enabled(true)
can dynamically enabled or disable the profiling, though
even with disabled a single comparison is made in each call to check the state of this flag. Most of
this small overhead can be removed by setting the -DPROFILE_DISABLED
compiler flag.
Profiling is performed in a thread_local manner, so it is thread-safe, but timings aren’t aggregated across threads.
The timing profile is stream formatted like this:
timing profile (ms) elapsed avg
=====================================
handle_points ........ 282.22 239.91
| get_transforms ....... 0.05 0.05
| transform ............ 2.33 2.24
| fit ................ 279.70 237.48
| | sample ............. 3.21 3.07
| | index .............. 3.53 3.16
| | init ............... 0.41 0.35
| | setup ............. 28.05 25.90
| |_solve ............ 205.69 168.50
|_publish .............. 0.01 0.01
Changelog for package hatchbed_common
0.1.2 (2025-04-06)
- Add simple timing profiler utility.
- Add global callback for any changes to registered dynamic parameter.
- Contributors: Marc Alban
0.1.1 (2024-11-24)
- Contributors: Marc Alban
Wiki Tutorials
Package Dependencies
Deps | Name |
---|---|
ament_cmake | |
ament_lint_auto | |
ament_lint_common | |
rclcpp |
System Dependencies
Dependant Packages
Name | Deps |
---|---|
opensw_ros |
Launch files
Messages
Services
Plugins
Recent questions tagged hatchbed_common at Robotics Stack Exchange
![]() |
hatchbed_common package from hatchbed_common repohatchbed_common |
Package Summary
Tags | No category tags. |
Version | 0.0.2 |
License | BSD |
Build type | CATKIN |
Use | RECOMMENDED |
Repository Summary
Checkout URI | https://github.com/hatchbed/hatchbed_common.git |
VCS Type | git |
VCS Version | ros1 |
Last Updated | 2024-11-24 |
Dev Status | DEVELOPED |
CI status | Continuous Integration |
Released | RELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Package Description
Additional Links
Maintainers
- Marc Alban
Authors
hatchbed_common
Common Hatchbed C++ utility code for ROS, such registering and handling updates to ros parameters.
Param Handler
The functionality and design are similar to ddynamic_reconfigure and swri_roscpp in that dynamic parameters can be created and managed programatically without needing to define a .cfg file.
The objectives are to:
- minimize boilerplate code for defining and accessing parameters
- support code clarity when defining parameters
- provide a similar interface for both static and dynamic parameters
- provide a similar interface for both ros1 and ros2
- add minor quality of life improvements like:
- logging parameter values at startup and on change
- enforcing range constraints
- publishing static (readonly) parameters to dynamic reconfig for easier runtime inspection
API
The ParamHandler
is a convenience class for managing static and dynamic ROS
parameters. It will automatically send parameter config description messages
when new parameters are registered with the handler and will handle receiving
and sending parameter updates.
Both static and dynamic parameters are included in the config description, but static parameters will be labeled as ‘(readonly)’ and prevent any updates that might come in for them.
Registering Parameters
When registering a new parameter the param handler will return a parameter object which can be used to access the parameter value in a thread safe way.
All parameters require a name, default value, and description.
Optionally, a pointer to an existing variable can be passed in when registering a parameter. In this case that variable is used to store the parameter value, but access to it is not protected, so should only be used in single threaded applications.
When registering a parameter it is possible to chain additional configuration items to the parameter, such as:
-
.callback()
: provide a callback function when the parameter changes, implies.dynamic()
-
.dynamic()
: allow the parameter to by modified with dynamic reconfig -
.enum()
: specify an enumeration for integer parameters -
.group()
: place the parameter in a sub-group -
.max()
: specify a maximum value for numeric parameters -
.min()
: specify a minimun value for numeric parameters
Static Parameters
For static parameters it’s generally sufficient to just immediately store the
value using the .value()
method.
hatchbed_common::ParamHandler params(ros::NodeHandle("~"));
// integer parameter
int num_tries = params.param("num_tries", 1, "Number of tries").min(1).max(50).value();
// string parameter
std::string frame_id = params.param("frame_id", std::string("base_link"), "TF frame").value();
// bool parameter
bool debug = params.param("debug", false, "Enable debug mode").value();
// double parameter
double threshold = params.param("threshold", 0.75, "Threshold value").min(0.0).max(1.0).value();
// enum parameter
int mode = params.param("mode", 0, "Operating mode").enumerate({
{0, "Default", "Default operating mode"},
{1, "Advanced", "Advanced operating mode"},
{20, "Legacy", "Legacy operating mode"}}).value();
Dynamic Parameters
For dynamic parameters, there are several options.
In a single threaded use case it’s possible to pass in a pointer to where the parameter should be stored:
int num_tries = 0;
params.param(&num_tries, "num_tries", 1, "Number of tries").min(1).max(50).dynamic();
while (ros::ok()) {
process.execute(num_tries);
ros::spinOnce();
}
Here the num_tries
int variable will be automatically updated.
When multi-threading is involved the above method is not recommended. Instead the parameter object returned by the handler should be used to ensure thread-safe data access.
auto num_tries = params.param("num_tries", 1, "Number of tries").min(1).max(50).dynamic();
std::thread t([&](){
while (ros::ok()) {
process.execute(num_tries.value());
}
});
ros::spin();
t.join();
The different parameter types are:
hatchbed_common::BoolParameter
hatchbed_common::DoubleParameter
hatchbed_common::IntParameter
hatchbed_common::StringParameter
In addition to accessing the current value, the parameter object can be used to
publish an update to the parameter using the .update()
method.
Finally, in some cases a direct callback may be desired to notify the process that the value has changed:
params.param("num_tries", 1, "Number of tries").min(1).max(50).callback([](int value){
process.setNumTries(value);
});
while (ros::ok()) {
process.exectute();
ros::spinOnce();
}
These different approaches are not mutually exclusive and can be used in concert.
Differences Between ROS1 and ROS2
- ros2:
.declare()
must be called after configuring a parameter - ros2: there is no
.group()
configuration - ros2: parameters are ordered alphabetically in dynamic_reconfigure
- ros2:
.register_verbose_logging_param()
helper function added to enable dynamic parameter for log-devel - ros1: there is no
.step()
configuration for numeric parameters - ros1: parameters are ordered in configuration order in dynamic_reconfigure
Changelog for package hatchbed_common
0.0.2 (2024-11-24)
- Contributors: Marc Alban
Wiki Tutorials
Package Dependencies
Deps | Name |
---|---|
catkin | |
dynamic_reconfigure | |
roscpp |
System Dependencies
Dependant Packages
Launch files
Messages
Services
Plugins
Recent questions tagged hatchbed_common at Robotics Stack Exchange
![]() |
hatchbed_common package from hatchbed_common repohatchbed_common |
Package Summary
Tags | No category tags. |
Version | 0.1.2 |
License | BSD |
Build type | AMENT_CMAKE |
Use | RECOMMENDED |
Repository Summary
Checkout URI | https://github.com/hatchbed/hatchbed_common.git |
VCS Type | git |
VCS Version | main |
Last Updated | 2025-04-06 |
Dev Status | DEVELOPED |
CI status | No Continuous Integration |
Released | UNRELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Package Description
Additional Links
Maintainers
- Marc Alban
Authors
hatchbed_common
Common Hatchbed C++ utility code for ROS, such registering and handling updates to ros parameters.
Param Handler
The functionality and design are similar to ddynamic_reconfigure and swri_roscpp in that dynamic parameters can be created and managed programatically without needing to define a .cfg file.
The objectives are to:
- minimize boilerplate code for defining and accessing parameters
- support code clarity when defining parameters
- provide a similar interface for both static and dynamic parameters
- provide a similar interface for both ros1 and ros2
- add minor quality of life improvements like:
- logging parameter values at startup and on change
- enforcing range constraints
- publishing static (readonly) parameters to dynamic reconfig for easier runtime inspection
API
The ParamHandler
is a convenience class for managing static and dynamic ROS
parameters. It will automatically send parameter config description messages
when new parameters are registered with the handler and will handle receiving
and sending parameter updates.
Both static and dynamic parameters are included in the config description, but static parameters will be labeled as ‘(readonly)’ and prevent any updates that might come in for them.
Registering Parameters
When registering a new parameter the param handler will return a parameter object which can be used to access the parameter value in a thread safe way.
All parameters require a name, default value, and description.
Optionally, a pointer to an existing variable can be passed in when registering a parameter. In this case that variable is used to store the parameter value, but access to it is not protected, so should only be used in single threaded applications.
When registering a parameter it is possible to chain additional configuration items to the parameter, such as:
-
.callback()
: provide a callback function when the parameter changes, implies.dynamic()
-
.dynamic()
: allow the parameter to by modified with dynamic reconfig -
.enum()
: specify an enumeration for integer parameters -
.max()
: specify a maximum value for numeric parameters -
.min()
: specify a minimun value for numeric parameters -
.step()
: specify a step size for numeric parameters
Once the parameter has been configured, it’s necessary to call the .declare()
method.
Static Parameters
For static parameters it’s generally sufficient to just immediately store the
value using the .value()
method.
auto node = std::make_shared<rclcpp::Node>("param_handler_example");
hatchbed_common::ParamHandler params(node);
// integer parameter
int num_tries = params.param("num_tries", 1, "Number of tries").min(1).max(50).declare().value();
// string parameter
std::string frame_id = params.param("frame_id", std::string("base_link"), "TF frame").declare().value();
// bool parameter
bool debug = params.param("debug", false, "Enable debug mode").value();
// double parameter
double threshold = params.param("threshold", 0.75, "Threshold value").min(0.0).max(1.0).declare().value();
// enum parameter
int mode = params.param("mode", 0, "Operating mode").enumerate({
{0, "Default", "Default operating mode"},
{1, "Advanced", "Advanced operating mode"},
{20, "Legacy", "Legacy operating mode"}}).declare().value();
Dynamic Parameters
For dynamic parameters, there are several options.
In a single threaded use case it’s possible to pass in a pointer to where the parameter should be stored:
int num_tries = 0;
params.param(&num_tries, "num_tries", 1, "Number of tries").min(1).max(50).dynamic().declare();
while (rclcpp::ok()) {
process.execute(num_tries);
rclcpp::spin_some(node);
}
Here the num_tries
int variable will be automatically updated.
When multi-threading is involved the above method is not recommended. Instead the parameter object returned by the handler should be used to ensure thread-safe data access.
auto num_tries = params.param("num_tries", 1, "Number of tries").min(1).max(50).dynamic().declare();
std::thread t([&](){
while (rclcpp::ok()) {
process.execute(num_tries.value());
}
});
rclcpp::spin(node);
t.join();
The different parameter types are:
hatchbed_common::BoolParameter
hatchbed_common::DoubleParameter
hatchbed_common::IntParameter
hatchbed_common::StringParameter
In addition to accessing the current value, the parameter object can be used to
publish an update to the parameter using the .update()
method.
In some cases a direct callback may be desired to notify the process that the value has changed:
params.param("num_tries", 1, "Number of tries").min(1).max(50).callback([](int value){
process.setNumTries(value);
}).declare();
while (rclcpp::ok()) {
process.exectute();
rclcpp::spin_some(node);
}
Finally, it’s possible to register a callback to notify the process that any of the registered dynamic parameters has been updated:
params.setCallback([]() {
// do something
});
These different approaches are not mutually exclusive and can be used in concert.
Differences Between ROS1 and ROS2
- ros2:
.declare()
must be called after configuring a parameter - ros2: there is no
.group()
configuration - ros2: parameters are ordered alphabetically in dynamic_reconfigure
- ros2:
.register_verbose_logging_param()
helper function added to enable dynamic parameter for log-devel - ros1: there is no
.step()
configuration for numeric parameters - ros1: parameters are ordered in configuration order in dynamic_reconfigure
## Simple Profiler
The simple_profiler.h
header file provides a simple, low overhead, time profiling utility.
// enable/disable profiling.
::profile::set_enabled(true);
// start a new named scope at current level
profile_scope("new_scope");
// do work
// open a new scope layer
::profile::push();
// start a child scope
profile_scope("child_scope1");
// do work
// start a second child scope, stopping previous scope: "child_scope1".
profile_scope("child_scope2");
// do work
// close the current scope layer, stopping any open child scope
::profile::pop();
// do work
// start a new scope, stopping "new_scope".
profile_scope("new_scope2");
// do work
// close any open scopes and increment count
::profile::finalize();
// print timings
std::cout << ::profile::get();
Profile scopes will stop automatically when:
- going out of the scope they were executed in
- a new scope on the same level is opened
- the current scope level is closed with a
::profile::pop()
-
::profile::finalize()
is called
Calling ::profile::finalize()
will increment the timing count for tracking the average timings
over multiple iterations.
Calling ::profile::set_enabled(true)
can dynamically enabled or disable the profiling, though
even with disabled a single comparison is made in each call to check the state of this flag. Most of
this small overhead can be removed by setting the -DPROFILE_DISABLED
compiler flag.
Profiling is performed in a thread_local manner, so it is thread-safe, but timings aren’t aggregated across threads.
The timing profile is stream formatted like this:
timing profile (ms) elapsed avg
=====================================
handle_points ........ 282.22 239.91
| get_transforms ....... 0.05 0.05
| transform ............ 2.33 2.24
| fit ................ 279.70 237.48
| | sample ............. 3.21 3.07
| | index .............. 3.53 3.16
| | init ............... 0.41 0.35
| | setup ............. 28.05 25.90
| |_solve ............ 205.69 168.50
|_publish .............. 0.01 0.01
Changelog for package hatchbed_common
0.1.2 (2025-04-06)
- Add simple timing profiler utility.
- Add global callback for any changes to registered dynamic parameter.
- Contributors: Marc Alban
0.1.1 (2024-11-24)
- Contributors: Marc Alban
Wiki Tutorials
Package Dependencies
Deps | Name |
---|---|
ament_cmake | |
ament_lint_auto | |
ament_lint_common | |
rclcpp |
System Dependencies
Dependant Packages
Name | Deps |
---|---|
opensw_ros |