-

mitch_v2_driver package from mitch_v2_driver repo

mitch_v2_driver

Package Summary

Tags No category tags.
Version 1.0.0
License BSD
Build type CATKIN
Use RECOMMENDED

Repository Summary

Checkout URI https://github.com/221eROS/mitch_v2_driver.git
VCS Type git
VCS Version main
Last Updated 2022-01-21
Dev Status UNMAINTAINED
CI status No Continuous Integration
Released UNRELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Package Description

ROS driver for the 221e Multisensor InerTial CHamaleon (MITCH) device

Additional Links

No additional links.

Maintainers

  • 221e srl

Authors

  • 221e srl

221e MULTISENSOR INERTIAL CHAMALEON V2 DRIVER FOR ROS

The official ROS driver for the 221e Multisensor InerTial CHamaleon (MITCH) V2 device.

Package available for:

  • ROS Noetic - Ubuntu 20.04;
  • ROS Noetic - Windows 10.

1 - Installation

Step 1 : Install the ROS distribution

a) Ubuntu:

b) Windows:

If you are exploiting Windows, we assume you are using Microsoft Visual Studio 2019. Remember to

  • include the “Desktop development with C++” workload;
  • in the Individual Components, select “Windows 10 SDK”.

Moreover, remember to start your installation routine from the ROS command short cut.

Step 2: Install lib221e

lib221e is the C++ library for the 221e Communication Protocol. Follow the installation instructions available here.

You can use git from Command Line. Otherwise, several free and commercial GUI tools are available. E.g., for the Windows platform, you can download a GUI from here.

In the same way, in Windows, you can install your library via Visual Studio [installed in step 1(b)]. A possible installation procedure follows:

  • open Visual Studio with administrator privileges;
  • choose to open up your library from your local folder;
  • open the Developer Command Prompt from Visual Studio-->Tools-->Command Line ;
  • launch cmake .. ;
  • launch cmake --build . --target INSTALL --config Release .

Step 3 : Create a Catkin Workspace

a) Ubuntu:

Open a terminal. From the

``` directory:


```sh
$ mkdir -p ~/catkin_ws/src
$ cd ~/catkin_ws/
$ catkin_init_workspace
$ echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc
$ source ~/.bashrc

Other details are available here.

b) Windows:

Open your ROS short cut terminal. In your

``` directory:


```sh
$ mkdir c:\catkin_ws\src
$ cd c:\catkin_ws
$ catkin_make
$ devel\setup.bat

Other details are available here.

You can decide to locate your workspace in other directories.

If you need the Ninja build tool, go to the releases page and download a suitable binary for Windows. Place

``` in a suitable spot, e.g., 
```C:\Ninja
```. Make sure that CMake can find 
```ninja.exe
``` by adding 
```C:\Ninja
``` to your 
```%PATH%
```.

***Step 4: Clone mitch_v2_driver in your Catkin Workspace

a) Ubuntu:

```sh
$ cd ~/catkin_ws/src/
$ git clone https://github.com/221eROS/mitch_v2_driver.git
$ catkin_make

b) Windows:

$ cd c:\catkin_ws\src
$ git clone https://github.com/221eROS/mitch_v2_driver.git
$ cd ..
$ catkin_make

2 - ROS for Windows: additional tips for Visual Studio 2019 [No mandatory!]

  • We suppose you have already installed Visual Studio 2019in step 1(b);
  • From the ROS shortcut of Step 1(b), enter devenv to start your Visual Studio IDE;
  • Choose to open up your catkin workspace from your local folder;
  • As Visual Studio is using different settings for CMake projects, we need to configure the CMake file. Thus, click Project --> CMake Settings for Project and edit the JSON version of your Cmake settings file as follows:
{
  "configurations": [
    {
      "name": "x64-Debug",
      "generator": "Ninja",
      "configurationType": "RelWithDebInfo",
      "inheritEnvironments": [ "msvc_x64_x64" ],
      "buildRoot": "C:\\catkin_ws\\build",
      "installRoot": "C:\\catkin_ws\\install",
      "cmakeCommandArgs": "DCATKIN_DEVEL_PREFIX=C:\\catkin_ws\\devel",
      "ctestCommandArgs": ""
    }
  ]
}

In this way, Cmaking and building your project from Visual Studio will be equal to a catkin_make outside the Visual Studio environment. You can also open the Command Line directly from the Visual Studio

``` button.

## 3 - Usage 

### a) Device connection
Switch on your MITCH V2 device. From your catkin workspace, launch the following command to connect to your sensor and enable its ROS node:

```sh
$ roslaunch mitch_v2_driver mitch_v2.launch

Among others, this launch file allows you to set:

  • port name (Default: COM4);
  • baudrate (Default: 115200).

b) Device shutdown

Assuming the ROS node of your MITCH V2 sensor is active [step 3(a)], launch the following command to switch off your device:

$ roslaunch mitch_v2_driver shutdown.launch

c) Battery charge and voltage

Assuming the ROS node of your MITCH V2 sensor is active [step 3(a)], type the following command from your catkin workspace:

$ roslaunch mitch_v2_driver battery.launch

The node will send back the battery charge, its voltage, or both depending on whether the arguments charge and voltage are set to true.

c) Firmware version

Assuming the ROS node of your MITCH V2 sensor is active [step 3(a)], type the following command from your catkin workspace:

$ roslaunch mitch_v2_driver get_firmware_version.launch

CHANGELOG
No CHANGELOG found.

Wiki Tutorials

This package does not provide any links to tutorials in it's rosindex metadata. You can check on the ROS Wiki Tutorials page for the package.

Package Dependencies

System Dependencies

No direct system dependencies.

Dependant Packages

No known dependants.

Launch files

Messages

No message files found.

Plugins

No plugins found.

Recent questions tagged mitch_v2_driver at Robotics Stack Exchange