Repo symbol

cyclonedds repository

cyclonedds

Repository Summary

Checkout URI https://github.com/eclipse-cyclonedds/cyclonedds.git
VCS Type git
VCS Version releases/0.10.x
Last Updated 2024-11-12
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
cyclonedds 0.10.5

README

GitHub release Build Status Coverity Status Coverage License License Website Community

Eclipse Cyclone DDS

Eclipse Cyclone DDS is a very performant and robust open-source implementation of the OMG DDS specification. Cyclone DDS is developed completely in the open as an Eclipse IoT project (see eclipse-cyclone-dds) with a growing list of adopters (if you’re one of them, please add your logo). It is a tier-1 middleware for the Robot Operating System ROS 2.

What is DDS?

DDS is the best-kept secret in distributed systems, one that has been around for much longer than most publish-subscribe messaging systems and still outclasses so many of them. DDS is used in a wide variety of systems, including air-traffic control, jet engine testing, railway control, medical systems, naval command-and-control, smart greenhouses and much more. In short, it is well-established in aerospace and defense but no longer limited to that. And yet it is easy to use!

Types are usually defined in IDL and preprocessed with the IDL compiler included in Cyclone, but our Python binding allows you to define data types on the fly:

from dataclasses import dataclass
from cyclonedds.domain import DomainParticipant
from cyclonedds.core import Qos, Policy
from cyclonedds.pub import DataWriter
from cyclonedds.sub import DataReader
from cyclonedds.topic import Topic
from cyclonedds.idl import IdlStruct
from cyclonedds.idl.annotations import key
from time import sleep
import numpy as np
try:
    from names import get_full_name
    name = get_full_name()
except:
    import os
    name = f"{os.getpid()}"

# C, C++ require using IDL, Python doesn't
@dataclass
class Chatter(IdlStruct, typename="Chatter"):
    name: str
    key("name")
    message: str
    count: int

rng = np.random.default_rng()
dp = DomainParticipant()
tp = Topic(dp, "Hello", Chatter, qos=Qos(Policy.Reliability.Reliable(0)))
dw = DataWriter(dp, tp)
dr = DataReader(dp, tp)
count = 0
while True:
    sample = Chatter(name=name, message="Hello, World!", count=count)
    count = count + 1
    print("Writing ", sample)
    dw.write(sample)
    for sample in dr.take(10):
        print("Read ", sample)
    sleep(rng.exponential())

Today DDS is also popular in robotics and autonomous vehicles because those really depend on high-throughput, low-latency control systems without introducing a single point of failure by having a message broker in the middle. Indeed, it is by far the most used and the default middleware choice in ROS 2. It is used to transfer commands, sensor data and even video and point clouds between components.

The OMG DDS specifications cover everything one needs to build systems using publish-subscribe messaging. They define a structural type system that allows automatic endianness conversion and type checking between readers and writers. This type system also supports type evolution. The interoperable networking protocol and standard C++ API make it easy to build systems that integrate multiple DDS implementations. Zero-configuration discovery is also included in the standard and supported by all implementations.

DDS actually brings more: publish-subscribe messaging is a nice abstraction over “ordinary” networking, but plain publish-subscribe doesn’t affect how one thinks about systems. A very powerful architecture that truly changes the perspective on distributed systems is that of the “shared data space”, in itself an old idea, and really just a distributed database. Most shared data space designs have failed miserably in real-time control systems because they provided strong consistency guarantees and sacrificed too much performance and flexibility. The eventually consistent shared data space of DDS has been very successful in helping with building systems that need to satisfy many “ilities”: dependability, maintainability, extensibility, upgradeability, … Truth be told, that’s why it was invented, and publish-subscribe messaging was simply an implementation technique.

Cyclone DDS aims at full coverage of the specs and today already covers most of this. With references to the individual OMG specifications, the following is available:

  • DCPS the base specification
    • zero configuration discovery (if multicast works)
    • publish/subscribe messaging
    • configurable storage of data in subscribers
    • many QoS settings - liveliness monitoring, deadlines, historical data, …
    • coverage includes the Minimum, Ownership and (partially) Content profiles
  • DDS Security - providing authentication, access control and encryption
  • DDS C++ API
  • DDS XTypes - the structural type system (some caveats here)
  • DDSI-RTPS - the interoperable network protocol

File truncated at 100 lines see the full file

CONTRIBUTING

Contributing to Eclipse Cyclone DDS

Thanks for your interest in this project.

Project description

Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ )

  • https://projects.eclipse.org/projects/iot.cyclonedds

Developer resources

Information regarding source code management, builds, coding standards, and more.

  • https://projects.eclipse.org/projects/iot.cyclonedds/developer

The project maintains the following source code repositories

  • https://github.com/eclipse/cyclonedds

Eclipse Contributor Agreement

Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA).

  • http://www.eclipse.org/legal/ECA.php

Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file.

For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit

Contact

Contact the project developers via the project’s “dev” list.

  • https://accounts.eclipse.org/mailing-list/cyclonedds-dev
# Contributing to Eclipse Cyclone DDS Thanks for your interest in this project. ## Project description Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ ) * https://projects.eclipse.org/projects/iot.cyclonedds ## Developer resources Information regarding source code management, builds, coding standards, and more. * https://projects.eclipse.org/projects/iot.cyclonedds/developer The project maintains the following source code repositories * https://github.com/eclipse/cyclonedds ## Eclipse Contributor Agreement Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA). * http://www.eclipse.org/legal/ECA.php Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file. For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit ## Contact Contact the project developers via the project's "dev" list. * https://accounts.eclipse.org/mailing-list/cyclonedds-dev
Repo symbol

cyclonedds repository

cyclonedds

Repository Summary

Checkout URI https://github.com/eclipse-cyclonedds/cyclonedds.git
VCS Type git
VCS Version releases/0.10.x
Last Updated 2024-11-12
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
cyclonedds 0.10.5

README

GitHub release Build Status Coverity Status Coverage License License Website Community

Eclipse Cyclone DDS

Eclipse Cyclone DDS is a very performant and robust open-source implementation of the OMG DDS specification. Cyclone DDS is developed completely in the open as an Eclipse IoT project (see eclipse-cyclone-dds) with a growing list of adopters (if you’re one of them, please add your logo). It is a tier-1 middleware for the Robot Operating System ROS 2.

What is DDS?

DDS is the best-kept secret in distributed systems, one that has been around for much longer than most publish-subscribe messaging systems and still outclasses so many of them. DDS is used in a wide variety of systems, including air-traffic control, jet engine testing, railway control, medical systems, naval command-and-control, smart greenhouses and much more. In short, it is well-established in aerospace and defense but no longer limited to that. And yet it is easy to use!

Types are usually defined in IDL and preprocessed with the IDL compiler included in Cyclone, but our Python binding allows you to define data types on the fly:

from dataclasses import dataclass
from cyclonedds.domain import DomainParticipant
from cyclonedds.core import Qos, Policy
from cyclonedds.pub import DataWriter
from cyclonedds.sub import DataReader
from cyclonedds.topic import Topic
from cyclonedds.idl import IdlStruct
from cyclonedds.idl.annotations import key
from time import sleep
import numpy as np
try:
    from names import get_full_name
    name = get_full_name()
except:
    import os
    name = f"{os.getpid()}"

# C, C++ require using IDL, Python doesn't
@dataclass
class Chatter(IdlStruct, typename="Chatter"):
    name: str
    key("name")
    message: str
    count: int

rng = np.random.default_rng()
dp = DomainParticipant()
tp = Topic(dp, "Hello", Chatter, qos=Qos(Policy.Reliability.Reliable(0)))
dw = DataWriter(dp, tp)
dr = DataReader(dp, tp)
count = 0
while True:
    sample = Chatter(name=name, message="Hello, World!", count=count)
    count = count + 1
    print("Writing ", sample)
    dw.write(sample)
    for sample in dr.take(10):
        print("Read ", sample)
    sleep(rng.exponential())

Today DDS is also popular in robotics and autonomous vehicles because those really depend on high-throughput, low-latency control systems without introducing a single point of failure by having a message broker in the middle. Indeed, it is by far the most used and the default middleware choice in ROS 2. It is used to transfer commands, sensor data and even video and point clouds between components.

The OMG DDS specifications cover everything one needs to build systems using publish-subscribe messaging. They define a structural type system that allows automatic endianness conversion and type checking between readers and writers. This type system also supports type evolution. The interoperable networking protocol and standard C++ API make it easy to build systems that integrate multiple DDS implementations. Zero-configuration discovery is also included in the standard and supported by all implementations.

DDS actually brings more: publish-subscribe messaging is a nice abstraction over “ordinary” networking, but plain publish-subscribe doesn’t affect how one thinks about systems. A very powerful architecture that truly changes the perspective on distributed systems is that of the “shared data space”, in itself an old idea, and really just a distributed database. Most shared data space designs have failed miserably in real-time control systems because they provided strong consistency guarantees and sacrificed too much performance and flexibility. The eventually consistent shared data space of DDS has been very successful in helping with building systems that need to satisfy many “ilities”: dependability, maintainability, extensibility, upgradeability, … Truth be told, that’s why it was invented, and publish-subscribe messaging was simply an implementation technique.

Cyclone DDS aims at full coverage of the specs and today already covers most of this. With references to the individual OMG specifications, the following is available:

  • DCPS the base specification
    • zero configuration discovery (if multicast works)
    • publish/subscribe messaging
    • configurable storage of data in subscribers
    • many QoS settings - liveliness monitoring, deadlines, historical data, …
    • coverage includes the Minimum, Ownership and (partially) Content profiles
  • DDS Security - providing authentication, access control and encryption
  • DDS C++ API
  • DDS XTypes - the structural type system (some caveats here)
  • DDSI-RTPS - the interoperable network protocol

File truncated at 100 lines see the full file

CONTRIBUTING

Contributing to Eclipse Cyclone DDS

Thanks for your interest in this project.

Project description

Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ )

  • https://projects.eclipse.org/projects/iot.cyclonedds

Developer resources

Information regarding source code management, builds, coding standards, and more.

  • https://projects.eclipse.org/projects/iot.cyclonedds/developer

The project maintains the following source code repositories

  • https://github.com/eclipse/cyclonedds

Eclipse Contributor Agreement

Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA).

  • http://www.eclipse.org/legal/ECA.php

Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file.

For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit

Contact

Contact the project developers via the project’s “dev” list.

  • https://accounts.eclipse.org/mailing-list/cyclonedds-dev
# Contributing to Eclipse Cyclone DDS Thanks for your interest in this project. ## Project description Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ ) * https://projects.eclipse.org/projects/iot.cyclonedds ## Developer resources Information regarding source code management, builds, coding standards, and more. * https://projects.eclipse.org/projects/iot.cyclonedds/developer The project maintains the following source code repositories * https://github.com/eclipse/cyclonedds ## Eclipse Contributor Agreement Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA). * http://www.eclipse.org/legal/ECA.php Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file. For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit ## Contact Contact the project developers via the project's "dev" list. * https://accounts.eclipse.org/mailing-list/cyclonedds-dev
Repo symbol

cyclonedds repository

cyclonedds

Repository Summary

Checkout URI https://github.com/eclipse-cyclonedds/cyclonedds.git
VCS Type git
VCS Version releases/0.10.x
Last Updated 2024-11-12
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
cyclonedds 0.10.5

README

GitHub release Build Status Coverity Status Coverage License License Website Community

Eclipse Cyclone DDS

Eclipse Cyclone DDS is a very performant and robust open-source implementation of the OMG DDS specification. Cyclone DDS is developed completely in the open as an Eclipse IoT project (see eclipse-cyclone-dds) with a growing list of adopters (if you’re one of them, please add your logo). It is a tier-1 middleware for the Robot Operating System ROS 2.

What is DDS?

DDS is the best-kept secret in distributed systems, one that has been around for much longer than most publish-subscribe messaging systems and still outclasses so many of them. DDS is used in a wide variety of systems, including air-traffic control, jet engine testing, railway control, medical systems, naval command-and-control, smart greenhouses and much more. In short, it is well-established in aerospace and defense but no longer limited to that. And yet it is easy to use!

Types are usually defined in IDL and preprocessed with the IDL compiler included in Cyclone, but our Python binding allows you to define data types on the fly:

from dataclasses import dataclass
from cyclonedds.domain import DomainParticipant
from cyclonedds.core import Qos, Policy
from cyclonedds.pub import DataWriter
from cyclonedds.sub import DataReader
from cyclonedds.topic import Topic
from cyclonedds.idl import IdlStruct
from cyclonedds.idl.annotations import key
from time import sleep
import numpy as np
try:
    from names import get_full_name
    name = get_full_name()
except:
    import os
    name = f"{os.getpid()}"

# C, C++ require using IDL, Python doesn't
@dataclass
class Chatter(IdlStruct, typename="Chatter"):
    name: str
    key("name")
    message: str
    count: int

rng = np.random.default_rng()
dp = DomainParticipant()
tp = Topic(dp, "Hello", Chatter, qos=Qos(Policy.Reliability.Reliable(0)))
dw = DataWriter(dp, tp)
dr = DataReader(dp, tp)
count = 0
while True:
    sample = Chatter(name=name, message="Hello, World!", count=count)
    count = count + 1
    print("Writing ", sample)
    dw.write(sample)
    for sample in dr.take(10):
        print("Read ", sample)
    sleep(rng.exponential())

Today DDS is also popular in robotics and autonomous vehicles because those really depend on high-throughput, low-latency control systems without introducing a single point of failure by having a message broker in the middle. Indeed, it is by far the most used and the default middleware choice in ROS 2. It is used to transfer commands, sensor data and even video and point clouds between components.

The OMG DDS specifications cover everything one needs to build systems using publish-subscribe messaging. They define a structural type system that allows automatic endianness conversion and type checking between readers and writers. This type system also supports type evolution. The interoperable networking protocol and standard C++ API make it easy to build systems that integrate multiple DDS implementations. Zero-configuration discovery is also included in the standard and supported by all implementations.

DDS actually brings more: publish-subscribe messaging is a nice abstraction over “ordinary” networking, but plain publish-subscribe doesn’t affect how one thinks about systems. A very powerful architecture that truly changes the perspective on distributed systems is that of the “shared data space”, in itself an old idea, and really just a distributed database. Most shared data space designs have failed miserably in real-time control systems because they provided strong consistency guarantees and sacrificed too much performance and flexibility. The eventually consistent shared data space of DDS has been very successful in helping with building systems that need to satisfy many “ilities”: dependability, maintainability, extensibility, upgradeability, … Truth be told, that’s why it was invented, and publish-subscribe messaging was simply an implementation technique.

Cyclone DDS aims at full coverage of the specs and today already covers most of this. With references to the individual OMG specifications, the following is available:

  • DCPS the base specification
    • zero configuration discovery (if multicast works)
    • publish/subscribe messaging
    • configurable storage of data in subscribers
    • many QoS settings - liveliness monitoring, deadlines, historical data, …
    • coverage includes the Minimum, Ownership and (partially) Content profiles
  • DDS Security - providing authentication, access control and encryption
  • DDS C++ API
  • DDS XTypes - the structural type system (some caveats here)
  • DDSI-RTPS - the interoperable network protocol

File truncated at 100 lines see the full file

CONTRIBUTING

Contributing to Eclipse Cyclone DDS

Thanks for your interest in this project.

Project description

Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ )

  • https://projects.eclipse.org/projects/iot.cyclonedds

Developer resources

Information regarding source code management, builds, coding standards, and more.

  • https://projects.eclipse.org/projects/iot.cyclonedds/developer

The project maintains the following source code repositories

  • https://github.com/eclipse/cyclonedds

Eclipse Contributor Agreement

Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA).

  • http://www.eclipse.org/legal/ECA.php

Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file.

For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit

Contact

Contact the project developers via the project’s “dev” list.

  • https://accounts.eclipse.org/mailing-list/cyclonedds-dev
# Contributing to Eclipse Cyclone DDS Thanks for your interest in this project. ## Project description Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ ) * https://projects.eclipse.org/projects/iot.cyclonedds ## Developer resources Information regarding source code management, builds, coding standards, and more. * https://projects.eclipse.org/projects/iot.cyclonedds/developer The project maintains the following source code repositories * https://github.com/eclipse/cyclonedds ## Eclipse Contributor Agreement Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA). * http://www.eclipse.org/legal/ECA.php Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file. For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit ## Contact Contact the project developers via the project's "dev" list. * https://accounts.eclipse.org/mailing-list/cyclonedds-dev
Repo symbol

cyclonedds repository

cyclonedds

Repository Summary

Checkout URI https://github.com/eclipse-cyclonedds/cyclonedds.git
VCS Type git
VCS Version releases/0.10.x
Last Updated 2024-11-12
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
cyclonedds 0.10.5

README

GitHub release Build Status Coverity Status Coverage License License Website Community

Eclipse Cyclone DDS

Eclipse Cyclone DDS is a very performant and robust open-source implementation of the OMG DDS specification. Cyclone DDS is developed completely in the open as an Eclipse IoT project (see eclipse-cyclone-dds) with a growing list of adopters (if you’re one of them, please add your logo). It is a tier-1 middleware for the Robot Operating System ROS 2.

What is DDS?

DDS is the best-kept secret in distributed systems, one that has been around for much longer than most publish-subscribe messaging systems and still outclasses so many of them. DDS is used in a wide variety of systems, including air-traffic control, jet engine testing, railway control, medical systems, naval command-and-control, smart greenhouses and much more. In short, it is well-established in aerospace and defense but no longer limited to that. And yet it is easy to use!

Types are usually defined in IDL and preprocessed with the IDL compiler included in Cyclone, but our Python binding allows you to define data types on the fly:

from dataclasses import dataclass
from cyclonedds.domain import DomainParticipant
from cyclonedds.core import Qos, Policy
from cyclonedds.pub import DataWriter
from cyclonedds.sub import DataReader
from cyclonedds.topic import Topic
from cyclonedds.idl import IdlStruct
from cyclonedds.idl.annotations import key
from time import sleep
import numpy as np
try:
    from names import get_full_name
    name = get_full_name()
except:
    import os
    name = f"{os.getpid()}"

# C, C++ require using IDL, Python doesn't
@dataclass
class Chatter(IdlStruct, typename="Chatter"):
    name: str
    key("name")
    message: str
    count: int

rng = np.random.default_rng()
dp = DomainParticipant()
tp = Topic(dp, "Hello", Chatter, qos=Qos(Policy.Reliability.Reliable(0)))
dw = DataWriter(dp, tp)
dr = DataReader(dp, tp)
count = 0
while True:
    sample = Chatter(name=name, message="Hello, World!", count=count)
    count = count + 1
    print("Writing ", sample)
    dw.write(sample)
    for sample in dr.take(10):
        print("Read ", sample)
    sleep(rng.exponential())

Today DDS is also popular in robotics and autonomous vehicles because those really depend on high-throughput, low-latency control systems without introducing a single point of failure by having a message broker in the middle. Indeed, it is by far the most used and the default middleware choice in ROS 2. It is used to transfer commands, sensor data and even video and point clouds between components.

The OMG DDS specifications cover everything one needs to build systems using publish-subscribe messaging. They define a structural type system that allows automatic endianness conversion and type checking between readers and writers. This type system also supports type evolution. The interoperable networking protocol and standard C++ API make it easy to build systems that integrate multiple DDS implementations. Zero-configuration discovery is also included in the standard and supported by all implementations.

DDS actually brings more: publish-subscribe messaging is a nice abstraction over “ordinary” networking, but plain publish-subscribe doesn’t affect how one thinks about systems. A very powerful architecture that truly changes the perspective on distributed systems is that of the “shared data space”, in itself an old idea, and really just a distributed database. Most shared data space designs have failed miserably in real-time control systems because they provided strong consistency guarantees and sacrificed too much performance and flexibility. The eventually consistent shared data space of DDS has been very successful in helping with building systems that need to satisfy many “ilities”: dependability, maintainability, extensibility, upgradeability, … Truth be told, that’s why it was invented, and publish-subscribe messaging was simply an implementation technique.

Cyclone DDS aims at full coverage of the specs and today already covers most of this. With references to the individual OMG specifications, the following is available:

  • DCPS the base specification
    • zero configuration discovery (if multicast works)
    • publish/subscribe messaging
    • configurable storage of data in subscribers
    • many QoS settings - liveliness monitoring, deadlines, historical data, …
    • coverage includes the Minimum, Ownership and (partially) Content profiles
  • DDS Security - providing authentication, access control and encryption
  • DDS C++ API
  • DDS XTypes - the structural type system (some caveats here)
  • DDSI-RTPS - the interoperable network protocol

File truncated at 100 lines see the full file

CONTRIBUTING

Contributing to Eclipse Cyclone DDS

Thanks for your interest in this project.

Project description

Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ )

  • https://projects.eclipse.org/projects/iot.cyclonedds

Developer resources

Information regarding source code management, builds, coding standards, and more.

  • https://projects.eclipse.org/projects/iot.cyclonedds/developer

The project maintains the following source code repositories

  • https://github.com/eclipse/cyclonedds

Eclipse Contributor Agreement

Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA).

  • http://www.eclipse.org/legal/ECA.php

Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file.

For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit

Contact

Contact the project developers via the project’s “dev” list.

  • https://accounts.eclipse.org/mailing-list/cyclonedds-dev
# Contributing to Eclipse Cyclone DDS Thanks for your interest in this project. ## Project description Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ ) * https://projects.eclipse.org/projects/iot.cyclonedds ## Developer resources Information regarding source code management, builds, coding standards, and more. * https://projects.eclipse.org/projects/iot.cyclonedds/developer The project maintains the following source code repositories * https://github.com/eclipse/cyclonedds ## Eclipse Contributor Agreement Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA). * http://www.eclipse.org/legal/ECA.php Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file. For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit ## Contact Contact the project developers via the project's "dev" list. * https://accounts.eclipse.org/mailing-list/cyclonedds-dev
Repo symbol

cyclonedds repository

Repo symbol

cyclonedds repository

Repo symbol

cyclonedds repository

Repo symbol

cyclonedds repository

cyclonedds

Repository Summary

Checkout URI https://github.com/eclipse-cyclonedds/cyclonedds.git
VCS Type git
VCS Version releases/0.5.x
Last Updated 2020-03-12
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
cyclonedds 0.5.1

README

Eclipse Cyclone DDS

Eclipse Cyclone DDS is a very performant and robust open-source DDS implementation. Cyclone DDS is developed completely in the open as an Eclipse IoT project (see eclipse-cyclone-dds).

Getting Started

Building Eclipse Cyclone DDS

In order to build Cyclone DDS you need a Linux, Mac or Windows 10 machine (or, with some caveats, an OpenIndiana one or a Solaris 2.6 one) with the following installed on your host:

  • C compiler (most commonly GCC on Linux, Visual Studio on Windows, Xcode on macOS);
  • GIT version control system;
  • CMake, version 3.7 or later;
  • OpenSSL, preferably version 1.1 or later if you want to use TLS over TCP. You can explicitly disable it by setting ENABLE_SSL=NO, which is very useful for reducing the footprint or when the FindOpenSSL CMake script gives you trouble;
  • Java JDK, version 8 or later, e.g., OpenJDK;
  • Apache Maven, version 3.5 or later.

On Ubuntu apt install maven default-jdk should do the trick for getting Java and Maven installed, and the rest should already be there. On Windows, installing chocolatey and choco install git cmake openjdk maven should get you a long way. On macOS, brew install maven cmake and downloading and installing the JDK is easiest.

The Java-based components are the preprocessor and a configurator tool. The run-time libraries are pure C code, so there is no need to have Java available on “target” machines. If desired, it is possible to do a build without Java or Maven installed by defining BUILD_IDLC=NO, but that effectively only gets you the core library. For the current ROS2 RMW layer, that is sufficient.

To obtain Eclipse Cyclone DDS, do

$ git clone https://github.com/eclipse-cyclonedds/cyclonedds.git
$ cd cyclonedds
$ mkdir build

Depending on whether you want to develop applications using Cyclone DDS or contribute to it you can follow different procedures

For application developers

To build and install the required libraries needed to develop your own applications using Cyclone DDS requires a few simple steps. There are some small differences between Linux and macOS on the one hand, and Windows on the other. For Linux or macOS:

$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=<install-location> ..
$ cmake --build .

and for Windows:

$ cd build
$ cmake -G "<generator-name>" -DCMAKE_INSTALL_PREFIX=<install-location> ..
$ cmake --build .

where you should replace <install-location> by the directory under which you would like to install Cyclone DDS and <generator-name> by one of the ways CMake generators offer for generating build files. For example, “Visual Studio 15 2017 Win64” would target a 64-bit build using Visual Studio 2017.

To install it after a successful build, do:

$ cmake --build . --target install

which will copy everything to:

  • <install-location>/lib
  • <install-location>/bin
  • <install-location>/include/ddsc
  • <install-location>/share/CycloneDDS

Depending on the installation location you may need administrator privileges.

At this point you are ready to use Eclipse Cyclone DDS in your own projects.

Note that the default build type is a release build with debug information included (RelWithDebInfo), which is generally the most convenient type of build to use from applications because of a good mix between performance and still being able to debug things. If you’d rather have a Debug or pure Release build, set CMAKE_BUILD_TYPE accordingly.

Contributing to Eclipse Cyclone DDS

We very much welcome all contributions to the project, whether that is questions, examples, bug fixes, enhancements or improvements to the documentation, or anything else really. When considering contributing code, it might be good to know that build configurations for Travis CI and AppVeyor are present in the repository and that there is a test suite using CTest and CUnit that can be built locally if desired. To build it, set the cmake variable BUILD_TESTING to on when configuring, e.g.:

$ cd build
$ cmake -DCMAKE_BUILD_TYPE=Debug -DBUILD_TESTING=ON ..
$ cmake --build .
$ ctest

File truncated at 100 lines see the full file

CONTRIBUTING

Contributing to Eclipse Cyclone DDS

Thanks for your interest in this project.

Project description

Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ )

  • https://projects.eclipse.org/projects/iot.cyclonedds

Developer resources

Information regarding source code management, builds, coding standards, and more.

  • https://projects.eclipse.org/projects/iot.cyclonedds/developer

The project maintains the following source code repositories

  • https://github.com/eclipse/cyclonedds

Eclipse Contributor Agreement

Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA).

  • http://www.eclipse.org/legal/ECA.php

Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file.

For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit

Contact

Contact the project developers via the project’s “dev” list.

  • https://accounts.eclipse.org/mailing-list/cyclonedds-dev
# Contributing to Eclipse Cyclone DDS Thanks for your interest in this project. ## Project description Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ ) * https://projects.eclipse.org/projects/iot.cyclonedds ## Developer resources Information regarding source code management, builds, coding standards, and more. * https://projects.eclipse.org/projects/iot.cyclonedds/developer The project maintains the following source code repositories * https://github.com/eclipse/cyclonedds ## Eclipse Contributor Agreement Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA). * http://www.eclipse.org/legal/ECA.php Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file. For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit ## Contact Contact the project developers via the project's "dev" list. * https://accounts.eclipse.org/mailing-list/cyclonedds-dev
Repo symbol

cyclonedds repository

cyclonedds

Repository Summary

Checkout URI https://github.com/eclipse-cyclonedds/cyclonedds.git
VCS Type git
VCS Version releases/0.7.x
Last Updated 2022-02-11
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
cyclonedds 0.7.0

README

Eclipse Cyclone DDS

Eclipse Cyclone DDS is a very performant and robust open-source DDS implementation. Cyclone DDS is developed completely in the open as an Eclipse IoT project (see eclipse-cyclone-dds) with a growing list of adopters (if you’re one of them, please add your logo). It is a tier-1 middleware for the Robot Operating System ROS 2.

Getting Started

Building Eclipse Cyclone DDS

In order to build Cyclone DDS you need a Linux, Mac or Windows 10 machine (or, with some caveats, a *BSD, OpenIndiana or a Solaris 2.6 one) with the following installed on your host:

  • C compiler (most commonly GCC on Linux, Visual Studio on Windows, Xcode on macOS);
  • GIT version control system;
  • CMake, version 3.7 or later;
  • OpenSSL, preferably version 1.1 or later if you want to use TLS over TCP. You can explicitly disable it by setting ENABLE_SSL=NO, which is very useful for reducing the footprint or when the FindOpenSSL CMake script gives you trouble;
  • Java JDK, version 8 or later, e.g., OpenJDK;
  • Apache Maven, version 3.5 or later.

On Ubuntu apt install maven default-jdk should do the trick for getting Java and Maven installed, and the rest should already be there. On Windows, installing chocolatey and choco install git cmake openjdk maven should get you a long way. On macOS, brew install maven cmake and downloading and installing the JDK is easiest.

The only Java-based component is the IDL preprocessor. The run-time libraries are pure C code, so there is no need to have Java available on “target” machines. If desired, it is possible to do a build without Java or Maven installed by defining BUILD_IDLC=NO, but that effectively only gets you the core library. For the current ROS 2 RMW layer, that is sufficient.

To obtain Eclipse Cyclone DDS, do

$ git clone https://github.com/eclipse-cyclonedds/cyclonedds.git
$ cd cyclonedds
$ mkdir build

Depending on whether you want to develop applications using Cyclone DDS or contribute to it you can follow different procedures

For application developers

To build and install the required libraries needed to develop your own applications using Cyclone DDS requires a few simple steps. There are some small differences between Linux and macOS on the one hand, and Windows on the other. For Linux or macOS:

$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=<install-location> ..
$ cmake --build .

and for Windows:

$ cd build
$ cmake -G "<generator-name>" -DCMAKE_INSTALL_PREFIX=<install-location> ..
$ cmake --build .

where you should replace <install-location> by the directory under which you would like to install Cyclone DDS and <generator-name> by one of the ways CMake generators offer for generating build files. For example, “Visual Studio 15 2017 Win64” would target a 64-bit build using Visual Studio 2017.

To install it after a successful build, do:

$ cmake --build . --target install

which will copy everything to:

  • <install-location>/lib
  • <install-location>/bin
  • <install-location>/include/ddsc
  • <install-location>/share/CycloneDDS

Depending on the installation location you may need administrator privileges.

At this point you are ready to use Eclipse Cyclone DDS in your own projects.

Note that the default build type is a release build with debug information included (RelWithDebInfo), which is generally the most convenient type of build to use from applications because of a good mix between performance and still being able to debug things. If you’d rather have a Debug or pure Release build, set CMAKE_BUILD_TYPE accordingly.

Contributing to Eclipse Cyclone DDS

We very much welcome all contributions to the project, whether that is questions, examples, bug fixes, enhancements or improvements to the documentation, or anything else really. When considering contributing code, it might be good to know that build configurations for Travis CI and AppVeyor are present in the repository and that there is a test suite using CTest and CUnit that can be built locally if desired. To build it, set the cmake variable BUILD_TESTING to on when configuring, e.g.:

$ cd build
$ cmake -DCMAKE_BUILD_TYPE=Debug -DBUILD_TESTING=ON ..
$ cmake --build .
$ ctest

Such a build requires the presence of CUnit. You can install this

File truncated at 100 lines see the full file

CONTRIBUTING

Contributing to Eclipse Cyclone DDS

Thanks for your interest in this project.

Project description

Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ )

  • https://projects.eclipse.org/projects/iot.cyclonedds

Developer resources

Information regarding source code management, builds, coding standards, and more.

  • https://projects.eclipse.org/projects/iot.cyclonedds/developer

The project maintains the following source code repositories

  • https://github.com/eclipse/cyclonedds

Eclipse Contributor Agreement

Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA).

  • http://www.eclipse.org/legal/ECA.php

Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file.

For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit

Contact

Contact the project developers via the project’s “dev” list.

  • https://accounts.eclipse.org/mailing-list/cyclonedds-dev
# Contributing to Eclipse Cyclone DDS Thanks for your interest in this project. ## Project description Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ ) * https://projects.eclipse.org/projects/iot.cyclonedds ## Developer resources Information regarding source code management, builds, coding standards, and more. * https://projects.eclipse.org/projects/iot.cyclonedds/developer The project maintains the following source code repositories * https://github.com/eclipse/cyclonedds ## Eclipse Contributor Agreement Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA). * http://www.eclipse.org/legal/ECA.php Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file. For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit ## Contact Contact the project developers via the project's "dev" list. * https://accounts.eclipse.org/mailing-list/cyclonedds-dev
Repo symbol

cyclonedds repository

cyclonedds

Repository Summary

Checkout URI https://github.com/eclipse-cyclonedds/cyclonedds.git
VCS Type git
VCS Version releases/0.8.x
Last Updated 2022-02-03
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
cyclonedds 0.8.2

README

Build Status Coverity Status Coverage License License

Eclipse Cyclone DDS

Eclipse Cyclone DDS is a very performant and robust open-source DDS implementation. Cyclone DDS is developed completely in the open as an Eclipse IoT project (see eclipse-cyclone-dds) with a growing list of adopters (if you’re one of them, please add your logo). It is a tier-1 middleware for the Robot Operating System ROS 2.

Consult the roadmap for a high-level overview of upcoming features.

Getting Started

Building Eclipse Cyclone DDS

In order to build Cyclone DDS you need a Linux, Mac or Windows 10 machine (or, with some caveats, a *BSD, OpenIndiana or a Solaris 2.6 one) with the following installed on your host:

  • C compiler (most commonly GCC on Linux, Visual Studio on Windows, Xcode on macOS);
  • GIT version control system;
  • CMake, version 3.7 or later;
  • OpenSSL, preferably version 1.1 or later if you want to use TLS over TCP. You can explicitly disable it by setting ENABLE_SSL=NO, which is very useful for reducing the footprint or when the FindOpenSSL CMake script gives you trouble;
  • Bison parser generator.

On Ubuntu apt install bison should do the trick for getting Bison installed, and the rest should already be there. On Windows, installing chocolatey and choco install winflexbison3 should get you a long way. On macOS, brew install bison is easiest.

To obtain Eclipse Cyclone DDS, do

$ git clone https://github.com/eclipse-cyclonedds/cyclonedds.git
$ cd cyclonedds
$ mkdir build

Depending on whether you want to develop applications using Cyclone DDS or contribute to it you can follow different procedures

For application developers

To build and install the required libraries needed to develop your own applications using Cyclone DDS requires a few simple steps. There are some small differences between Linux and macOS on the one hand, and Windows on the other. For Linux or macOS:

$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=<install-location> -DBUILD_EXAMPLES=ON ..
$ cmake --build .

and for Windows:

$ cd build
$ cmake -G "<generator-name>" -DCMAKE_INSTALL_PREFIX=<install-location> -DBUILD_EXAMPLES=ON ..
$ cmake --build .

where you should replace <install-location> by the directory under which you would like to install Cyclone DDS and <generator-name> by one of the ways CMake generators offer for generating build files. For example, “Visual Studio 15 2017 Win64” would target a 64-bit build using Visual Studio 2017.

To install it after a successful build, do:

$ cmake --build . --target install

which will copy everything to:

  • <install-location>/lib
  • <install-location>/bin
  • <install-location>/include/ddsc
  • <install-location>/share/CycloneDDS

Depending on the installation location you may need administrator privileges.

At this point you are ready to use Eclipse Cyclone DDS in your own projects.

Note that the default build type is a release build with debug information included (RelWithDebInfo), which is generally the most convenient type of build to use from applications because of a good mix between performance and still being able to debug things. If you’d rather have a Debug or pure Release build, set CMAKE_BUILD_TYPE accordingly.

Contributing to Eclipse Cyclone DDS

We very much welcome all contributions to the project, whether that is questions, examples, bug fixes, enhancements or improvements to the documentation, or anything else really. When considering contributing code, it might be good to know that build configurations for Travis CI and AppVeyor are present in the repository and that there is a test suite using CTest and CUnit that can be built locally if desired. To build it, set the cmake variable BUILD_TESTING to on when configuring, e.g.:

$ cd build
$ cmake -DCMAKE_BUILD_TYPE=Debug -DBUILD_TESTING=ON ..
$ cmake --build .
$ ctest

Such a build requires the presence of CUnit. You can install this

File truncated at 100 lines see the full file

CONTRIBUTING

Contributing to Eclipse Cyclone DDS

Thanks for your interest in this project.

Project description

Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ )

  • https://projects.eclipse.org/projects/iot.cyclonedds

Developer resources

Information regarding source code management, builds, coding standards, and more.

  • https://projects.eclipse.org/projects/iot.cyclonedds/developer

The project maintains the following source code repositories

  • https://github.com/eclipse/cyclonedds

Eclipse Contributor Agreement

Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA).

  • http://www.eclipse.org/legal/ECA.php

Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file.

For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit

Contact

Contact the project developers via the project’s “dev” list.

  • https://accounts.eclipse.org/mailing-list/cyclonedds-dev
# Contributing to Eclipse Cyclone DDS Thanks for your interest in this project. ## Project description Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ ) * https://projects.eclipse.org/projects/iot.cyclonedds ## Developer resources Information regarding source code management, builds, coding standards, and more. * https://projects.eclipse.org/projects/iot.cyclonedds/developer The project maintains the following source code repositories * https://github.com/eclipse/cyclonedds ## Eclipse Contributor Agreement Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA). * http://www.eclipse.org/legal/ECA.php Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file. For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit ## Contact Contact the project developers via the project's "dev" list. * https://accounts.eclipse.org/mailing-list/cyclonedds-dev
Repo symbol

cyclonedds repository

cyclonedds

Repository Summary

Checkout URI https://github.com/eclipse-cyclonedds/cyclonedds.git
VCS Type git
VCS Version releases/0.7.x
Last Updated 2022-02-11
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
cyclonedds 0.7.0

README

Eclipse Cyclone DDS

Eclipse Cyclone DDS is a very performant and robust open-source DDS implementation. Cyclone DDS is developed completely in the open as an Eclipse IoT project (see eclipse-cyclone-dds) with a growing list of adopters (if you’re one of them, please add your logo). It is a tier-1 middleware for the Robot Operating System ROS 2.

Getting Started

Building Eclipse Cyclone DDS

In order to build Cyclone DDS you need a Linux, Mac or Windows 10 machine (or, with some caveats, a *BSD, OpenIndiana or a Solaris 2.6 one) with the following installed on your host:

  • C compiler (most commonly GCC on Linux, Visual Studio on Windows, Xcode on macOS);
  • GIT version control system;
  • CMake, version 3.7 or later;
  • OpenSSL, preferably version 1.1 or later if you want to use TLS over TCP. You can explicitly disable it by setting ENABLE_SSL=NO, which is very useful for reducing the footprint or when the FindOpenSSL CMake script gives you trouble;
  • Java JDK, version 8 or later, e.g., OpenJDK;
  • Apache Maven, version 3.5 or later.

On Ubuntu apt install maven default-jdk should do the trick for getting Java and Maven installed, and the rest should already be there. On Windows, installing chocolatey and choco install git cmake openjdk maven should get you a long way. On macOS, brew install maven cmake and downloading and installing the JDK is easiest.

The only Java-based component is the IDL preprocessor. The run-time libraries are pure C code, so there is no need to have Java available on “target” machines. If desired, it is possible to do a build without Java or Maven installed by defining BUILD_IDLC=NO, but that effectively only gets you the core library. For the current ROS 2 RMW layer, that is sufficient.

To obtain Eclipse Cyclone DDS, do

$ git clone https://github.com/eclipse-cyclonedds/cyclonedds.git
$ cd cyclonedds
$ mkdir build

Depending on whether you want to develop applications using Cyclone DDS or contribute to it you can follow different procedures

For application developers

To build and install the required libraries needed to develop your own applications using Cyclone DDS requires a few simple steps. There are some small differences between Linux and macOS on the one hand, and Windows on the other. For Linux or macOS:

$ cd build
$ cmake -DCMAKE_INSTALL_PREFIX=<install-location> ..
$ cmake --build .

and for Windows:

$ cd build
$ cmake -G "<generator-name>" -DCMAKE_INSTALL_PREFIX=<install-location> ..
$ cmake --build .

where you should replace <install-location> by the directory under which you would like to install Cyclone DDS and <generator-name> by one of the ways CMake generators offer for generating build files. For example, “Visual Studio 15 2017 Win64” would target a 64-bit build using Visual Studio 2017.

To install it after a successful build, do:

$ cmake --build . --target install

which will copy everything to:

  • <install-location>/lib
  • <install-location>/bin
  • <install-location>/include/ddsc
  • <install-location>/share/CycloneDDS

Depending on the installation location you may need administrator privileges.

At this point you are ready to use Eclipse Cyclone DDS in your own projects.

Note that the default build type is a release build with debug information included (RelWithDebInfo), which is generally the most convenient type of build to use from applications because of a good mix between performance and still being able to debug things. If you’d rather have a Debug or pure Release build, set CMAKE_BUILD_TYPE accordingly.

Contributing to Eclipse Cyclone DDS

We very much welcome all contributions to the project, whether that is questions, examples, bug fixes, enhancements or improvements to the documentation, or anything else really. When considering contributing code, it might be good to know that build configurations for Travis CI and AppVeyor are present in the repository and that there is a test suite using CTest and CUnit that can be built locally if desired. To build it, set the cmake variable BUILD_TESTING to on when configuring, e.g.:

$ cd build
$ cmake -DCMAKE_BUILD_TYPE=Debug -DBUILD_TESTING=ON ..
$ cmake --build .
$ ctest

Such a build requires the presence of CUnit. You can install this

File truncated at 100 lines see the full file

CONTRIBUTING

Contributing to Eclipse Cyclone DDS

Thanks for your interest in this project.

Project description

Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ )

  • https://projects.eclipse.org/projects/iot.cyclonedds

Developer resources

Information regarding source code management, builds, coding standards, and more.

  • https://projects.eclipse.org/projects/iot.cyclonedds/developer

The project maintains the following source code repositories

  • https://github.com/eclipse/cyclonedds

Eclipse Contributor Agreement

Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA).

  • http://www.eclipse.org/legal/ECA.php

Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file.

For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit

Contact

Contact the project developers via the project’s “dev” list.

  • https://accounts.eclipse.org/mailing-list/cyclonedds-dev
# Contributing to Eclipse Cyclone DDS Thanks for your interest in this project. ## Project description Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ ) * https://projects.eclipse.org/projects/iot.cyclonedds ## Developer resources Information regarding source code management, builds, coding standards, and more. * https://projects.eclipse.org/projects/iot.cyclonedds/developer The project maintains the following source code repositories * https://github.com/eclipse/cyclonedds ## Eclipse Contributor Agreement Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA). * http://www.eclipse.org/legal/ECA.php Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file. For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit ## Contact Contact the project developers via the project's "dev" list. * https://accounts.eclipse.org/mailing-list/cyclonedds-dev
Repo symbol

cyclonedds repository

cyclonedds

Repository Summary

Checkout URI https://github.com/eclipse-cyclonedds/cyclonedds.git
VCS Type git
VCS Version releases/0.10.x
Last Updated 2024-11-12
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Packages

Name Version
cyclonedds 0.10.5

README

GitHub release Build Status Coverity Status Coverage License License Website Community

Eclipse Cyclone DDS

Eclipse Cyclone DDS is a very performant and robust open-source implementation of the OMG DDS specification. Cyclone DDS is developed completely in the open as an Eclipse IoT project (see eclipse-cyclone-dds) with a growing list of adopters (if you’re one of them, please add your logo). It is a tier-1 middleware for the Robot Operating System ROS 2.

What is DDS?

DDS is the best-kept secret in distributed systems, one that has been around for much longer than most publish-subscribe messaging systems and still outclasses so many of them. DDS is used in a wide variety of systems, including air-traffic control, jet engine testing, railway control, medical systems, naval command-and-control, smart greenhouses and much more. In short, it is well-established in aerospace and defense but no longer limited to that. And yet it is easy to use!

Types are usually defined in IDL and preprocessed with the IDL compiler included in Cyclone, but our Python binding allows you to define data types on the fly:

from dataclasses import dataclass
from cyclonedds.domain import DomainParticipant
from cyclonedds.core import Qos, Policy
from cyclonedds.pub import DataWriter
from cyclonedds.sub import DataReader
from cyclonedds.topic import Topic
from cyclonedds.idl import IdlStruct
from cyclonedds.idl.annotations import key
from time import sleep
import numpy as np
try:
    from names import get_full_name
    name = get_full_name()
except:
    import os
    name = f"{os.getpid()}"

# C, C++ require using IDL, Python doesn't
@dataclass
class Chatter(IdlStruct, typename="Chatter"):
    name: str
    key("name")
    message: str
    count: int

rng = np.random.default_rng()
dp = DomainParticipant()
tp = Topic(dp, "Hello", Chatter, qos=Qos(Policy.Reliability.Reliable(0)))
dw = DataWriter(dp, tp)
dr = DataReader(dp, tp)
count = 0
while True:
    sample = Chatter(name=name, message="Hello, World!", count=count)
    count = count + 1
    print("Writing ", sample)
    dw.write(sample)
    for sample in dr.take(10):
        print("Read ", sample)
    sleep(rng.exponential())

Today DDS is also popular in robotics and autonomous vehicles because those really depend on high-throughput, low-latency control systems without introducing a single point of failure by having a message broker in the middle. Indeed, it is by far the most used and the default middleware choice in ROS 2. It is used to transfer commands, sensor data and even video and point clouds between components.

The OMG DDS specifications cover everything one needs to build systems using publish-subscribe messaging. They define a structural type system that allows automatic endianness conversion and type checking between readers and writers. This type system also supports type evolution. The interoperable networking protocol and standard C++ API make it easy to build systems that integrate multiple DDS implementations. Zero-configuration discovery is also included in the standard and supported by all implementations.

DDS actually brings more: publish-subscribe messaging is a nice abstraction over “ordinary” networking, but plain publish-subscribe doesn’t affect how one thinks about systems. A very powerful architecture that truly changes the perspective on distributed systems is that of the “shared data space”, in itself an old idea, and really just a distributed database. Most shared data space designs have failed miserably in real-time control systems because they provided strong consistency guarantees and sacrificed too much performance and flexibility. The eventually consistent shared data space of DDS has been very successful in helping with building systems that need to satisfy many “ilities”: dependability, maintainability, extensibility, upgradeability, … Truth be told, that’s why it was invented, and publish-subscribe messaging was simply an implementation technique.

Cyclone DDS aims at full coverage of the specs and today already covers most of this. With references to the individual OMG specifications, the following is available:

  • DCPS the base specification
    • zero configuration discovery (if multicast works)
    • publish/subscribe messaging
    • configurable storage of data in subscribers
    • many QoS settings - liveliness monitoring, deadlines, historical data, …
    • coverage includes the Minimum, Ownership and (partially) Content profiles
  • DDS Security - providing authentication, access control and encryption
  • DDS C++ API
  • DDS XTypes - the structural type system (some caveats here)
  • DDSI-RTPS - the interoperable network protocol

File truncated at 100 lines see the full file

CONTRIBUTING

Contributing to Eclipse Cyclone DDS

Thanks for your interest in this project.

Project description

Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ )

  • https://projects.eclipse.org/projects/iot.cyclonedds

Developer resources

Information regarding source code management, builds, coding standards, and more.

  • https://projects.eclipse.org/projects/iot.cyclonedds/developer

The project maintains the following source code repositories

  • https://github.com/eclipse/cyclonedds

Eclipse Contributor Agreement

Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA).

  • http://www.eclipse.org/legal/ECA.php

Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file.

For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit

Contact

Contact the project developers via the project’s “dev” list.

  • https://accounts.eclipse.org/mailing-list/cyclonedds-dev
# Contributing to Eclipse Cyclone DDS Thanks for your interest in this project. ## Project description Eclipse Cyclone DDS is an implementation of the OMG Data Distribution Service (DDS) specification (see http://www.omg.org/spec/DDS/ ) and the related specifications for interoperability (see http://www.omg.org/spec/DDSI-RTPS/ ) * https://projects.eclipse.org/projects/iot.cyclonedds ## Developer resources Information regarding source code management, builds, coding standards, and more. * https://projects.eclipse.org/projects/iot.cyclonedds/developer The project maintains the following source code repositories * https://github.com/eclipse/cyclonedds ## Eclipse Contributor Agreement Before your contribution can be accepted by the project team contributors must electronically sign the Eclipse Contributor Agreement (ECA). * http://www.eclipse.org/legal/ECA.php Commits that are provided by non-committers must have a Signed-off-by field in the footer indicating that the author is aware of the terms by which the contribution has been provided to the project. The non-committer must additionally have an Eclipse Foundation account and must have a signed Eclipse Contributor Agreement (ECA) on file. For more information, please see the Eclipse Committer Handbook: https://www.eclipse.org/projects/handbook/#resources-commit ## Contact Contact the project developers via the project's "dev" list. * https://accounts.eclipse.org/mailing-list/cyclonedds-dev
Repo symbol

cyclonedds repository

Repo symbol

cyclonedds repository

Repo symbol

cyclonedds repository

Repo symbol

cyclonedds repository

Repo symbol

cyclonedds repository

Repo symbol

cyclonedds repository

Repo symbol

cyclonedds repository