-

genty package from genty repo

genty

Third-Party Package

This third-party package's source repository does not contain a package manifest. Instead, its package manifest is stored in its release repository. In order to build this package from source in a Catkin workspace, please download its package manifest.

Package Summary

Tags No category tags.
Version 1.3.0
License Apache
Build type CATKIN
Use RECOMMENDED

Repository Summary

Checkout URI https://github.com/box/genty.git
VCS Type git
VCS Version v1.3.0
Last Updated 2015-11-06
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Package Description

Genty, pronounced "gen-tee", stands for "generate tests". It promotes generative testing, where a single test can execute over a variety of input.

Additional Links

Maintainers

  • AlexV

Authors

No additional authors.

genty

image

image

image

image

About

Genty, pronounced "gen-tee", stands for "generate tests". It promotes generative testing, where a single test can execute over a variety of input. Genty makes this a breeze.

For example, consider a file sample.py containing both the code under test and the tests:

``` {.sourceCode .python} from genty import genty, genty_repeat, genty_dataset from unittest import TestCase

Here’s the class under test

class MyClass(object): def add_one(self, x): return x + 1

Here’s the test code

@genty class MyClassTests(TestCase): @genty_dataset( (0, 1), (100000, 100001), ) def test_add_one(self, value, expected_result): actual_result = MyClass().add_one(value) self.assertEqual(expected_result, actual_result)


Running the `MyClassTests` using the default unittest runner


``` {.sourceCode .console}
$ python -m unittest -v sample
test_add_one(0, 1) (sample.MyClassTests) ... ok
test_add_one(100000, 100001) (sample.MyClassTests) ... ok

----------------------------------------------------------------------
Ran 2 tests in 0.000s

OK

Instead of having to write multiple independent tests for various test cases, code can be refactored and parametrized using genty!

It produces readable tests. It produces maintainable tests. It produces expressive tests.

Another option is running the same test multiple times. This is useful in stress tests or when exercising code looking for race conditions. This particular test

``` {.sourceCode .python} @genty_repeat(3) def test_adding_one_to_zero(self): self.assertEqual(1, MyClass().add_one(0))


would be run 3 times, producing output like


``` {.sourceCode .console}
$ python -m unittest -v sample
test_adding_one() iteration_1 (sample.MyClassTests) ... ok
test_adding_one() iteration_2 (sample.MyClassTests) ... ok
test_adding_one() iteration_3 (sample.MyClassTests) ... ok

----------------------------------------------------------------------
Ran 3 tests in 0.001s

OK

The 2 techniques can be combined:

``` {.sourceCode .python} @genty_repeat(2) @genty_dataset( (0, 1), (100000, 100001), ) def test_add_one(self, value, expected_result): actual_result = MyClass().add_one(value) self.assertEqual(expected_result, actual_result)


There are more options to explore including naming your datasets and
`genty_args`.


``` {.sourceCode .python}
@genty_dataset(
    default_case=(0, 1),
    limit_case=(999, 1000),
    error_case=genty_args(-1, -1, is_something=False),
)
def test_complex(self, value1, value2, optional_value=None, is_something=True):
    ...

would run 3 tests, producing output like

``` {.sourceCode .console} $ python -m unittest -v sample test_complex(default_case) (sample.MyClassTests) … ok test_complex(limit_case) (sample.MyClassTests) … ok test_complex(error_case) (sample.MyClassTests) … ok


Ran 3 tests in 0.003s

OK


The `@genty_datasets` can be chained together. This is useful, for
example, if there are semantically different datasets so keeping them
separate would help expressiveness.


``` {.sourceCode .python}
@genty_dataset(10, 100)
@genty_dataset('first', 'second')
def test_composing(self, parameter_value):
    ...

would run 4 tests, producing output like

``` {.sourceCode .console} $ python -m unittest -v sample test_composing(10) (sample.MyClassTests) … ok test_composing(100) (sample.MyClassTests) … ok test_composing(u’first’) (sample.MyClassTests) … ok test_composing(u’second’) (sample.MyClassTests) … ok


Ran 4 tests in 0.000s

OK


Sometimes the parameters to a test can\'t be determined at module load
time. For example, some test might be based on results from some http
request. And first the test needs to authenticate, etc. This is
supported using the `@genty_dataprovider` decorator like so:


``` {.sourceCode .python}
def setUp(self):
    super(MyClassTests, self).setUp()

    # http authentication happens
    # And imagine that _some_function is actually some http request
    self._some_function = lambda x, y: ((x + y), (x - y), (x * y))

@genty_dataset((1000, 100), (100, 1))
def calculate(self, x_val, y_val):
    # when this is called... we've been authenticated
    return self._some_function(x_val, y_val)

@genty_dataprovider(calculate)
def test_heavy(self, data1, data2, data3):
    ...

would run 4 tests, producing output like

``` {.sourceCode .console} $ python -m unittest -v sample test_heavy_calculate(100, 1) (sample.MyClassTests) … ok test_heavy_calculate(1000, 100) (sample.MyClassTests) … ok


Ran 2 tests in 0.000s

OK


Notice here how the name of the helper (`calculate`) is added to the
names of the 2 executed test cases.

Like `@genty_dataset`, `@genty_dataprovider` can be chained together.

Enjoy!

Deferred Parameterization
-------------------------

Parametrized tests where the final parameters are not determined until
test execution time. It looks like so:


``` {.sourceCode .python}
@genty_dataset((1000, 100), (100, 1))
def calculate(self, x_val, y_val):
    # when this is called... we've been authenticated, perhaps in
    # some Test.setUp() method.

    # Let's imagine that _some_function requires that authentication.
    # And it returns a 3-tuple, matching that signature of
    # of the test(s) decorated with this 'calculate' method.
    return self._some_function(x_val, y_val)

@genty_dataprovider(calculate)
def test_heavy(self, data1, data2, data3):
    ...

The calculate() method is called 2 times based on the @genty_dataset decorator, and each of it's return values define the final parameters that will be given to the method test_heavy(...).

Installation

To install, simply:

``` {.sourceCode .console} pip install genty


Contributing
------------

See
[CONTRIBUTING.rst](https://github.com/box/genty/blob/master/CONTRIBUTING.rst).

### Setup

Create a virtual environment and install packages -


``` {.sourceCode .console}
mkvirtualenv genty
pip install -r requirements-dev.txt

Testing

Run all tests using -

``` {.sourceCode .console} tox

```

The tox tests include code style checks via pep8 and pylint.

The tox tests are configured to run on Python 2.6, 2.7, 3.3, 3.4, 3.5, and PyPy 2.6.

Copyright 2015 Box, Inc. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
CHANGELOG
No CHANGELOG found.

Wiki Tutorials

This package does not provide any links to tutorials in it's rosindex metadata. You can check on the ROS Wiki Tutorials page for the package.

Package Dependencies

System Dependencies

Dependant Packages

No known dependants.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged genty at Robotics Stack Exchange

genty package from genty repo

genty

Third-Party Package

This third-party package's source repository does not contain a package manifest. Instead, its package manifest is stored in its release repository. In order to build this package from source in a Catkin workspace, please download its package manifest.

Package Summary

Tags No category tags.
Version 1.3.0
License Apache
Build type CATKIN
Use RECOMMENDED

Repository Summary

Checkout URI https://github.com/box/genty.git
VCS Type git
VCS Version v1.3.0
Last Updated 2015-11-06
Dev Status MAINTAINED
CI status No Continuous Integration
Released RELEASED
Tags No category tags.
Contributing Help Wanted (0)
Good First Issues (0)
Pull Requests to Review (0)

Package Description

Genty, pronounced "gen-tee", stands for "generate tests". It promotes generative testing, where a single test can execute over a variety of input.

Additional Links

Maintainers

  • AlexV

Authors

No additional authors.

genty

image

image

image

image

About

Genty, pronounced "gen-tee", stands for "generate tests". It promotes generative testing, where a single test can execute over a variety of input. Genty makes this a breeze.

For example, consider a file sample.py containing both the code under test and the tests:

``` {.sourceCode .python} from genty import genty, genty_repeat, genty_dataset from unittest import TestCase

Here’s the class under test

class MyClass(object): def add_one(self, x): return x + 1

Here’s the test code

@genty class MyClassTests(TestCase): @genty_dataset( (0, 1), (100000, 100001), ) def test_add_one(self, value, expected_result): actual_result = MyClass().add_one(value) self.assertEqual(expected_result, actual_result)


Running the `MyClassTests` using the default unittest runner


``` {.sourceCode .console}
$ python -m unittest -v sample
test_add_one(0, 1) (sample.MyClassTests) ... ok
test_add_one(100000, 100001) (sample.MyClassTests) ... ok

----------------------------------------------------------------------
Ran 2 tests in 0.000s

OK

Instead of having to write multiple independent tests for various test cases, code can be refactored and parametrized using genty!

It produces readable tests. It produces maintainable tests. It produces expressive tests.

Another option is running the same test multiple times. This is useful in stress tests or when exercising code looking for race conditions. This particular test

``` {.sourceCode .python} @genty_repeat(3) def test_adding_one_to_zero(self): self.assertEqual(1, MyClass().add_one(0))


would be run 3 times, producing output like


``` {.sourceCode .console}
$ python -m unittest -v sample
test_adding_one() iteration_1 (sample.MyClassTests) ... ok
test_adding_one() iteration_2 (sample.MyClassTests) ... ok
test_adding_one() iteration_3 (sample.MyClassTests) ... ok

----------------------------------------------------------------------
Ran 3 tests in 0.001s

OK

The 2 techniques can be combined:

``` {.sourceCode .python} @genty_repeat(2) @genty_dataset( (0, 1), (100000, 100001), ) def test_add_one(self, value, expected_result): actual_result = MyClass().add_one(value) self.assertEqual(expected_result, actual_result)


There are more options to explore including naming your datasets and
`genty_args`.


``` {.sourceCode .python}
@genty_dataset(
    default_case=(0, 1),
    limit_case=(999, 1000),
    error_case=genty_args(-1, -1, is_something=False),
)
def test_complex(self, value1, value2, optional_value=None, is_something=True):
    ...

would run 3 tests, producing output like

``` {.sourceCode .console} $ python -m unittest -v sample test_complex(default_case) (sample.MyClassTests) … ok test_complex(limit_case) (sample.MyClassTests) … ok test_complex(error_case) (sample.MyClassTests) … ok


Ran 3 tests in 0.003s

OK


The `@genty_datasets` can be chained together. This is useful, for
example, if there are semantically different datasets so keeping them
separate would help expressiveness.


``` {.sourceCode .python}
@genty_dataset(10, 100)
@genty_dataset('first', 'second')
def test_composing(self, parameter_value):
    ...

would run 4 tests, producing output like

``` {.sourceCode .console} $ python -m unittest -v sample test_composing(10) (sample.MyClassTests) … ok test_composing(100) (sample.MyClassTests) … ok test_composing(u’first’) (sample.MyClassTests) … ok test_composing(u’second’) (sample.MyClassTests) … ok


Ran 4 tests in 0.000s

OK


Sometimes the parameters to a test can\'t be determined at module load
time. For example, some test might be based on results from some http
request. And first the test needs to authenticate, etc. This is
supported using the `@genty_dataprovider` decorator like so:


``` {.sourceCode .python}
def setUp(self):
    super(MyClassTests, self).setUp()

    # http authentication happens
    # And imagine that _some_function is actually some http request
    self._some_function = lambda x, y: ((x + y), (x - y), (x * y))

@genty_dataset((1000, 100), (100, 1))
def calculate(self, x_val, y_val):
    # when this is called... we've been authenticated
    return self._some_function(x_val, y_val)

@genty_dataprovider(calculate)
def test_heavy(self, data1, data2, data3):
    ...

would run 4 tests, producing output like

``` {.sourceCode .console} $ python -m unittest -v sample test_heavy_calculate(100, 1) (sample.MyClassTests) … ok test_heavy_calculate(1000, 100) (sample.MyClassTests) … ok


Ran 2 tests in 0.000s

OK


Notice here how the name of the helper (`calculate`) is added to the
names of the 2 executed test cases.

Like `@genty_dataset`, `@genty_dataprovider` can be chained together.

Enjoy!

Deferred Parameterization
-------------------------

Parametrized tests where the final parameters are not determined until
test execution time. It looks like so:


``` {.sourceCode .python}
@genty_dataset((1000, 100), (100, 1))
def calculate(self, x_val, y_val):
    # when this is called... we've been authenticated, perhaps in
    # some Test.setUp() method.

    # Let's imagine that _some_function requires that authentication.
    # And it returns a 3-tuple, matching that signature of
    # of the test(s) decorated with this 'calculate' method.
    return self._some_function(x_val, y_val)

@genty_dataprovider(calculate)
def test_heavy(self, data1, data2, data3):
    ...

The calculate() method is called 2 times based on the @genty_dataset decorator, and each of it's return values define the final parameters that will be given to the method test_heavy(...).

Installation

To install, simply:

``` {.sourceCode .console} pip install genty


Contributing
------------

See
[CONTRIBUTING.rst](https://github.com/box/genty/blob/master/CONTRIBUTING.rst).

### Setup

Create a virtual environment and install packages -


``` {.sourceCode .console}
mkvirtualenv genty
pip install -r requirements-dev.txt

Testing

Run all tests using -

``` {.sourceCode .console} tox

```

The tox tests include code style checks via pep8 and pylint.

The tox tests are configured to run on Python 2.6, 2.7, 3.3, 3.4, 3.5, and PyPy 2.6.

Copyright 2015 Box, Inc. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
CHANGELOG
No CHANGELOG found.

Wiki Tutorials

This package does not provide any links to tutorials in it's rosindex metadata. You can check on the ROS Wiki Tutorials page for the package.

Package Dependencies

System Dependencies

Dependant Packages

No known dependants.

Launch files

No launch files found

Messages

No message files found.

Services

No service files found

Plugins

No plugins found.

Recent questions tagged genty at Robotics Stack Exchange