Repository Summary
Checkout URI | https://github.com/septentrio-gnss/septentrio_gnss_driver.git |
VCS Type | git |
VCS Version | master |
Last Updated | 2024-08-04 |
Dev Status | MAINTAINED |
CI status | No Continuous Integration |
Released | RELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Packages
Name | Version |
---|---|
septentrio_gnss_driver | 1.4.1 |
README
ROSaic = ROS + mosaic
Overview
This repository hosts drivers for ROS 1 (Melodic and Noetic) and ROS 2 (Foxy, Galactic, Humble, Iron, Rolling, and beyond) - written in C++ - that work with mosaic and AsteRx - two of Septentrio's cutting-edge GNSS and GNSS/INS receiver families - and beyond. Both ROS 1 and ROS 2 are supported within one repository.
Main Features:
- Supports Septentrio's single antenna GNSS, dual antenna GNSS and INS receivers
- Supports serial, TCP/IP and USB connections, the latter being compatible with both serial (RNDIS) and TCP/IP protocols
- Supports several ASCII (including key NMEA ones) messages and SBF (Septentrio Binary Format) blocks
- Reports status of AIM+ (Advanced Interference Mitigation including OSNMA) anti-jamming and anti-spoofing.
- Can publish nav_msgs/Odometry
message for INS receivers
- Can blend SBF blocks PVTGeodetic
, PosCovGeodetic
, ChannelStatus
, MeasEpoch
, AttEuler
, AttCovEuler
, VelCovGeodetic
and DOP
in order to publish gps_common/GPSFix
and sensor_msgs/NavSatFix
messages
- Supports optional axis convention conversion since Septentrio follows the NED convention, whereas ROS is ENU.
- Easy configuration of multiple RTK corrections simultaneously (via NTRIP, TCP/IP stream, or serial)
- Can play back PCAP capture logs for testing purposes
- Tested with the mosaic-X5, mosaic-H, AsteRx-m3 Pro+, AsteRx-SB Pro+ and the AsteRx-SBi3 Pro receiver
- Easy to add support for more log types
Please let the maintainers know of your success or failure in using the driver with other devices so we can update this page appropriately.
Usage
Important notes
Notes Before Usage
+ The driver assumes that our anonymous access to the Rx grants us full control rights. This should be the case by default, and can otherwise be changed with the `setDefaultAccessLevel` command. If user control is in place user credentials can be given by parameters `login.user` and `login.password`. + Note for serial connection: Make sure the user is part of the `dialout` group to have full access to the serial ports. If not, add it for example with `sudo adduser [username] dialout`. + Note for setting hw_flow_control: This is a string parameter, setting it to off without quotes leads to the fact that it is not read in correctly. + Note for setting ant_(aux1)_serial_nr: This is a string parameter, numeric only serial numbers should be put in quotes. If this is not done a warning will be issued and the driver tries to parse it as integer. + Note for usage of NTRIP via USB with virtual ethernet (RNDIS): RNDIS provides a virtual network connection only between the receiver and the PC. First outgoing network access via USB has to be activated, which is explained [here](https://www.youtube.com/watch?v=bUt8cL9Ue1Y). Next setup internet sharing under Linux by setting the connection of the virtual network interface (the name should be something like enx1a3202991545) to "Shared to other computers". + Once the build or binary installation is finished, adapt the `config/rover.yaml` file according to your needs or assemble a new one, examples for GNSS specific parameters `config/gnss.yaml` and INS `config/ins.yaml` are also available. Specify the communication parameters, the ROS messages to be published, the frequency at which the latter should happen etc.ROS 1: Launch the `launch/rover.launch` to use `rover.yaml` or add `param_file_name:=xxx` to use a custom config.
ROS 2: Launch as composition with `ros2 launch septentrio_gnss_driver rover.launch.py` to use `rover.yaml` or add `file_name:=xxx.yaml` to use a custom config. Alternatively launch as node with `ros2 launch septentrio_gnss_driver rover_node.launch.py` to use `rover_node.yaml` or add `file_name:=xxx.yaml` to use a custom config. Specify the communication parameters, the ROS messages to be published, the frequency at which the latter should happen etc. + Besides the aforementioned config file `rover.yaml` containing all parameters, specialized launch files for GNSS `config/gnss.yaml` and INS `config/ins.yaml` respectively contain only the relevant parameters in each case. - NOTE: Unless `configure_rx` is set to `false`, this driver will overwrite the previous values of the parameters, even if the value is left to zero in the "yaml" file. + The driver was developed and tested with firmware versions >= 4.10.0 for GNSS and >= 1.3.2 for INS. Receivers with older firmware versions are supported but some features may not be available. Known limitations are: * GNSS with firmware < 4.10.0 does not support IP over USB. * GNSS with firmware < 4.12.1 does not support OSNMA. * GNSS with firmware < 4.14 does not support PTP server clock. * INS with firmware <= 1.2.0 does not support velocity aiding. * INS with firmware <= 1.2.0 does not support setting of initial heading. * INS with firmware < 1.3.2 does not support NTP. * INS with firmware < 1.4 does not support OSNMA. * INS with firmware < 1.4.1 does not support improved VSM handling allowing for unknown variances. * INS does not support PTP server clock as of now. + Known issues: * UDP over USB: Blocks are sent twice on GNSS with firmware <= 4.12.1 and INS with firmware <= 1.4. For GNSS it is fixed in version 4.14 (released on June 15th 2023), for INS is fixed in 1.4.1 (released November 2023). + If `use_ros_axis_orientation` to `true` axis orientations are converted by the driver between NED (Septentrio: yaw = 0 is north, positive clockwise) and ENU (ROS: yaw = 0 is east, positive counterclockwise). There is no conversion when setting this parameter to `false` and the angles will be consistent with the web GUI in this case. :
``` # Example configuration Settings for the Rover Rx device: tcp://192.168.3.1:28784 serial: baudrate: 921600 hw_flow_control: "off" stream_device: tcp: ip_server: "" port: 0 udp: ip_server: "" port: 0 unicast_ip: "" configure_rx: true custom_commands_file: "" login: user: "" password: "" osnma: mode: "off" ntp_server: "" keep_open: true frame_id: gnss imu_frame_id: imu poi_frame_id: base_link vsm_frame_id: vsm aux1_frame_id: aux1 vehicle_frame_id: base_link insert_local_frame: false local_frame_id: odom get_spatial_config_from_tf: true lock_utm_zone: true use_ros_axis_orientation: true receiver_type: gnss datum: Default poi_to_arp: delta_e: 0.0 delta_n: 0.0 delta_u: 0.0 att_offset: heading: 0.0 pitch: 0.0 ant_type: Unknown ant_aux1_type: Unknown ant_serial_nr: Unknown ant_aux1_serial_nr: Unknown leap_seconds: 18 polling_period: pvt: 500 rest: 500 use_gnss_time: false ntp_server: false ptp_server_clock: false latency_compensation: false rtk_settings: ntrip_1: id: "NTR1" caster: "1.2.3.4" caster_port: 2101 username: "Asterix" password: "password" mountpoint: "mtpt1" version: "v2" tls: true fingerprint: "AA:BB:56:78:90:12: ... 78:90:12:34" rtk_standard: "RTCMv3" send_gga: "auto" keep_open: true ntrip_2: id: "NTR3" caster: "5.6.7.8" caster_port: 2101 username: "Obelix" password: "password" mountpoint: "mtpt2" version: "v2" tls: false fingerprint: "" rtk_standard: "RTCMv2" send_gga: "auto" keep_open: true ip_server_1: id: "IPS3" port: 28785 rtk_standard: "RTCMv2" send_gga: "auto" keep_open: true ip_server_2: id: "IPS5" port: 28786 rtk_standard: "CMRv2" send_gga: "auto" keep_open: true serial_1: port: "COM1" baud_rate: 230400 rtk_standard: "auto" send_gga: "sec1" keep_open: true serial_2: port: "COM2" baud_rate: 230400 rtk_standard: "auto" send_gga: "off" keep_open: true publish: # For both GNSS and INS Rxs auto_publish: false publish_only_valid: false navsatfix: false gpsfix: true gpgga: false gprmc: false gpst: false measepoch: false pvtcartesian: false pvtgeodetic: true basevectorcart: false basevectorgeod: false poscovcartesian: false poscovgeodetic: true velcovcartesian: false velcovgeodetic: false atteuler: true attcoveuler: true pose: false twist: false diagnostics: false aimplusstatus: true galauthstatus: false # For GNSS Rx only gpgsa: false gpgsv: false # For INS Rx only insnavcart: false insnavgeod: false extsensormeas: false imusetup: false velsensorsetup: false exteventinsnavcart: false exteventinsnavgeod: false imu: false localization: false tf: false localization_ecef: false tf_ecef: false # INS-Specific Parameters ins_spatial_config: imu_orientation: theta_x: 0.0 theta_y: 0.0 theta_z: 0.0 poi_lever_arm: delta_x: 0.0 delta_y: 0.0 delta_z: 0.0 ant_lever_arm: x: 0.0 y: 0.0 z: 0.0 vsm_lever_arm: vsm_x: 0.0 vsm_y: 0.0 vsm_z: 0.0 ins_initial_heading: auto ins_std_dev_mask: att_std_dev: 5.0 pos_std_dev: 10.0 ins_use_poi: true ins_vsm: source: "twist" config: [true, false, false] variances_by_parameter: true variances: [0.1, 0.0, 0.0] ip_server: id: "IPS2" port: 28787 keep_open: true serial: port: "COM3" baud_rate: 115200 keep_open: true # Logger activate_debug_log: false ``` In order to launch ROSaic, the launch command for ROS 1 reads `roslaunch septentrio_gnss_driver rover.launch param_file_name:=rover` and for ROS 2 reads `ros2 launch septentrio_gnss_driver rover.py file_name:=rover.yaml`. If multiple port are utilized for RTK corrections and/or VSM, which shall be closed after driver shutdown (`keep_open: false`), make sure to give the driver enough time to gracefully shutdown as closing the ports takes a few seconds. For ROS 2, this can be accomplished in the launch files by increasing the timeout of SIGTERM (e.g. `sigterm_timeout = '10',`), see example launch files`rover.launch.py`and `rover_node.launch.py` respectively.
Dependencies
ROS
This driver functions on ROS 1 [Melodic](https://wiki.ros.org/melodic/Installation/Ubuntu) and [Noetic](https://wiki.ros.org/noetic/Installation/Ubuntu) or ROS 2 [Foxy](https://docs.ros.org/en/foxy/Installation.html), [Galactic](https://docs.ros.org/en/galactic/Installation.html), [Humble](https://docs.ros.org/en/humble/Installation.html) [Iron](https://docs.ros.org/en/iron/Installation.html), [Jazzy](https://docs.ros.org/en/jazzy/Installation.html), and [Rolling](https://docs.ros.org/en/rolling/Installation.html) (Ubuntu 18.04, 20.04, 22.04, or 24.04 respectively). It is thus necessary to install the ROS version that has been designed for your Linux distro.Binary Install
The binary release is available for ROS 1 (Melodic and Noetic) and ROS 2 (Foxy, Galactic, Humble, Iron, Jazzy, and Rolling). Since Melodic, Foxy, and Galactic are EOL, only Noetic, Humble, Iron, Jazzy, and Rolling will get updated versions. To install the binary package, simply run `sudo apt-get install ros-$ROS_DISTRO-septentrio-gnss-driver`.Build from source
Build
+ Building ROSaic only works from C++17 onwards due to the usage of std::any() etc. #### Dependencies for development Additional ROS packages have to be installed for the NMEA and GPSFix messages.ROS 1: `sudo apt install ros-$ROS_DISTRO-nmea-msgs ros-$ROS_DISTRO-gps-common`.
ROS 2: `sudo apt install ros-$ROS_DISTRO-nmea-msgs ros-$ROS_DISTRO-gps-msgs`.
The serial and TCP/IP communication interface of the ROS driver is established by means of the [Boost C++ library](https://www.boost.org/). In the unlikely event that the below installation instructions fail to install Boost on the fly, please install the Boost libraries via
`sudo apt install libboost-all-dev`.
Conversions from LLA to UTM are incorporated through [GeographicLib](https://geographiclib.sourceforge.io/). Install the necessary headers via
`sudo apt install libgeographic-dev`
or
`sudo apt install libgeographiclib-dev`
since Ubunutu 24.04. respectively.
Compatiblity with PCAP captures are incorporated through [pcap libraries](https://github.com/the-tcpdump-group/libpcap). Install the necessary headers via
`sudo apt install libpcap-dev`.
#### ROS 1 For ROS 1, the package can be built from source using [`catkin_tools`](https://catkin-tools.readthedocs.io/en/latest/installing.html), where the latter can be installed using the command `sudo apt-get install python-catkin-tools` for Melodic or `sudo apt-get install python3-catkin-tools` for Noetic. The typical `catkin_tools` [workflow](https://catkin-tools.readthedocs.io/en/latest/quick_start.html) should suffice: ``` source /opt/ros/${ROS_DISTRO}/setup.bash # In case you do not use the default shell of Ubuntu, you need to source another script, e.g. setup.sh. mkdir -p ~/septentrio/src # Note: Change accordingly depending on where you want your package to be installed. cd ~/septentrio catkin init # Initialize with a hidden marker file catkin config --cmake-args -DCMAKE_BUILD_TYPE=RelWithDebInfo # CMake build types pass compiler-specific flags to your compiler. This type amounts to a release with debug info, while keeping debugging symbols and doing optimization. I.e. for GCC the flags would be -O2, -g and -DNDEBUG. cd src git clone https://github.com/septentrio-gnss/septentrio_gnss_driver rosdep install . --from-paths -i # Might raise "rosaic: Unsupported OS [mint]" warning, if your OS is Linux Mint, since rosdep does not know Mint (and possible other OSes). In that case, add the "--os=ubuntu:saucy" option to "fool" rosdep into believing it faces some Ubuntu version. The syntax is "--os=OS_NAME:OS_VERSION". catkin build # If catkin cannot find empty, tell catkin to use Python 3 by adding "-DPYTHON_EXECUTABLE=/usr/bin/python3". echo "source ~/septentrio/devel/setup.bash" >> ~/.bashrc # It is convenient if the ROS environment variable is automatically added to your bash session every time a new shell is launched. Again, this works for bash shells only. Also note that if you have more than one ROS distribution installed, ~/.bashrc must only source the setup.bash for the version you are currently using. source ~/.bashrc ``` #### ROS 2 For ROS 2, The package has to be built from source using [`colcon`](https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Colcon-Tutorial.html): ``` source /opt/ros/${ROS_DISTRO}/setup.bash # In case you do not use the default shell of Ubuntu, you need to source another script, e.g. setup.sh. mkdir -p ~/septentrio/src # Note: Change accordingly depending on where you want your package to be installed. cd ~/septentrio/src git clone https://github.com/septentrio-gnss/septentrio_gnss_driver git checkout ros2 # Install mentioned dependencies (`sudo apt install ros-$ROS_DISTRO-nmea_msgs ros-$ROS_DISTRO-gps-msgs libboost-all-dev libpcap-dev libgeographic-dev`) colcon build --packages-up-to septentrio_gnss_driver # Be sure to call colcon build in the root folder of your workspace. Launch files are installed, so changing them on the fly in the source folder only works with installing by symlinks: add `--symlink-install` echo "source ~/septentrio/devel/setup.bash" >> ~/.bashrc # It is convenient if the ROS environment variable is automatically added to your bash session every time a new shell is launched. Again, this works for bash shells only. Also note that if you have more than one ROS distribution installed, ~/.bashrc must only source the setup.bash for the version you are currently using. source ~/.bashrc ``` Run tests ``` colcon test --packages-select septentrio_gnss_driver --event-handlers console_direct+ ```
Inertial Navigation System (INS): Basics
- An Inertial Navigation System (INS) is a device which takes the rotation and acceleration solutions as obtained from its Inertial Measurement Unit (IMU) and combines those with position and velocity information from the GNSS module. Compared to a GNSS system with 7D or 8D (dual-antenna systems) phase space solutions, the combined, Kalman-filtered 9D phase space solution (3 for position, 3 for velocity, 3 for orientation) of an INS is more accurate, more precise and more stable against GNSS outages.
-
The IMU is typically made up of a 3-axis accelerometer, a 3-axis gyroscope and sometimes a 3-axis magnetometer and measures the system's angular rate and acceleration.
Measure and Compensate for IMU-Antenna Lever Arm
- The IMU-antenna lever-arm is the relative position between the IMU reference point and the GNSS Antenna Reference Point (ARP), measured in the vehicle frame.
- In case of AsteRx SBi3, the IMU reference point is clearly marked on the top panel of the receiver. It is important to compensate for the effect of the lever arm, otherwise the receiver may not be able to calculate an accurate INS position.
- The IMU/antenna position can be changed by specifying the lever arm's
x
,y
andz
parameters in theconfig.yaml
file under theins_spatial_config.ant_lever_arm
parameter.
Compensate for IMU Orientation
+ It is important to take into consideration the mounting direction of the IMU in the body frame of the vehicle. For e.g. when the receiver is installed horizontally with the front panel facing the direction of travel, we must compensate for the IMU’s orientation to make sure the IMU reference frame is aligned with the vehicle reference frame. The IMU position and orientation is printed on the top panel, cf. image below. + The IMU's orientation can be changed by specifying the orientation anglestheta_x
,theta_y
andtheta_z
in theconfig.yaml
file underins_spatial_config.imu_orientation
+ The below image illustrates the orientation of the IMU reference frame with the associated IMU orientation for the depicted installation. Note that foruse_ros_axis_orientation: true
sensor_default is the top left position. -
These Steps should be followed to configure the receiver in INS integration mode:
- Specify
receiver_type: INS
- Specify the orientation of the IMU sensor with respect to your vehicle, using the
ins_spatial_config.imu_orientation
parameter. - Specify the IMU-antenna lever arm in the vehicle reference frame. This is the vector starting from the IMU reference point to the ARP of the main GNSS antenna. This can be done by means of the
ins_spatial_config.ant_lever_arm
parameter. - Specify
ins_spatial_config.vsm_lever_arm
if measurements of a velocity sensor is available. - Alternatively the lever arms may be specified via tf. Set
get_spatial_config_from_tf
totrue
in this case. - If the point of interest is neither the IMU nor the ARP of the main GNSS antenna, the vector between the IMU and the point of interest can be provided with the
ins_solution/poi_lever_arm
parameter.
- Specify
For further more information about Septentrio receivers, visit Septentrio support resources or check out the user manual and reference guide of the AsteRx SBi3 receiver.
ROSaic Parameters
The following is a list of ROSaic parameters found in the config/rover.yaml
file. Note, that in the following nested parameters are depicted in ROS 2 style, i.e., using a .
as delimiter, whereas in ROS 1 the delimiter is a /
.
* Parameters Configuring Communication Ports and Processing of GNSS and INS Data
Connectivity Specs
-
device
: location of main device connection. This interface will be used for setup communication and VSM data for INS. Incoming data streams of SBF blocks and NMEA sentences are recevied either via this interface or a static IP server for TCP and/or UDP. The former will be utilized if sectionstream_device.tcp
andstream_device.udp
are not configured.-
serial:xxx
format for serial connections,where xxx is the device node, e.g.serial:/dev/ttyS0
. If using serial over USB, it is recommended to specify the port by ID as the Rx may get a different ttyXXX on reconnection, e.g.serial:/dev/serial/by-id/usb-Septentrio_Septentrio_USB_Device_xyz
. -
file_name:path/to/file.sbf
format for publishing from an SBF log. When reading from a file,use_gnss_time
is automatically set to true, since constructing the time stamps from ROS time would not match the data. If the sbf log does not containReceiverTime
, parameterleap_seconds
must be set manually. -
file_name:path/to/file.pcap
format for publishing from PCAP capture. When reading from a file,use_gnss_time
is automatically set to true, since constructing the time stamps from ROS time would not match the data. If the pcap log does not containReceiverTime
, parameterleap_seconds
must be set manually.- Regarding the file path, ROS_HOME=`pwd` in front of
roslaunch septentrio...
might be useful to specify that the node should be started using the executable's directory as its working-directory.
- Regarding the file path, ROS_HOME=`pwd` in front of
-
tcp://host:port
format for TCP/IP connections-
28784
should be used as the default (command) port for TCP/IP connections. If another port is specified, the receiver needs to be (re-)configured via the Web Interface before ROSaic can be used. - An RNDIS IP interface is provided via USB, assigning the address
192.168.3.1
to the receiver. This should work on most modern Linux distributions. To verify successful connection, open a web browser to access the web interface of the receiver using the IP address192.168.3.1
.
-
- default:
tcp://192.168.3.1:28784
-
-
serial
: specifications for serial communication-
baudrate
: serial baud rate to be used in a serial connection. Ensure the provided rate is sufficient for the chosen SBF blocks. For example, activating MeasEpoch (also necessary for /gpsfix) may require up to almost 400 kBit/s. -
rx_serial_port
: determines to which (virtual) serial port of the Rx we want to get connected to, e.g. USB1 or COM1 -
hw_flow_control
: specifies whether the serial (the Rx's COM ports, not USB1 or USB2) connection to the Rx should have UART hardware flow control enabled or not-
off
to disable UART hardware flow control,RTS|CTS
to enable it
-
- default:
921600
,USB1
,off
-
-
stream_device
: If left unconfigured, by defaultdevice
is utilized for the data streams. Withinstream_device
static IP servers may be defined instead. In config mode (configure_rx
set totrue
), TCP will be prioritized over UDP. If Rx is pre-configured, both may be set simultaneously.-
tcp
: specifications for static TCP server of SBF blocks and NMEA sentences.-
ip_server
: IP server of Rx to be used, e.g. “IPS1”. -
port
: UDP destination port.
-
-
udp
: specifications for low latency UDP reception of SBF blocks and NMEA sentences.-
ip_server
: IP server of Rx to be used, e.g. “IPS1”. -
port
: UDP destination port. -
unicast_ip
: Set to computer's IP to use unicast (optional). If not set multicast will be used.
-
-
-
login
: credentials for user authentication to perform actions not allowed to anonymous users. Leave empty for anonymous access.-
user
: user name -
password
: password
-
-
custom_commands_file
: path to a file containing custom commands to be sent to the Rx. The file shall contain one command per line. Be very careful using this command, since commands are sent to the Rx without further checks.
OSNMA
-
osnma
: Configuration of the Open Service Navigation Message Authentication (OSNMA) feature.-
mode
: Three operating modes are supported:off
where OSNMA authentication is disabled,loose
where satellites are included in the PVT if they are successfully authenticated or if their authentication status is unknown, andstrict
where only successfully-authenticated satellites are included in the PVT. In case ofstrict
synchronization via NTP is mandatory.- default: off
-
ntp_server
: Instrict
mode, OSNMA authentication requires the availability of external time information. Inloose
mode, this is optional but recommended for enhanced security. The receiver can connect to an NTP time server for this purpose. Options aredefault
to let the receiver choose an NTP server or specify one likepool.ntp.org
for example.- default: ""
-
keep_open
: Wether OSNMA shall be kept active on driver shutdown.- default: true
-
Receiver Configuration
+ configure_rx: Wether to configure the Rx according to the config file. If set to `false`, the Rx has to be configured via the web interface and the settings must be saved. On the driver side communication has to set accordingly to serial, TCP or UDP (TCP and UDP may even be used simultaneously in this case). For TCP communication it is recommended to use a static TCP server (`stream_device.tcp.ip_server` and `stream_device.tcp.port`), since dynamic connections (`device` is tcp) are not guaranteed to have the same id on reconnection. It should also be ensured that obligatory SBF blocks are activated (as of now: ReceiverTime if `use_gnss_time` is set to `true`; `PVTGeodetic`or `PVTCartesian` if latency compensation for PVT related blocks shall be used). Further, if ROS messages compiled from multiple SBF blocks, it should be ensured that all necessary blocks are activated with matching periods, details can be found in section [ROS Topic Publications](#ros-topic-publications). The messages that shall be published still have to be set to `true` in the *NMEA/SBF Messages to be Published* section. Also, parameters concerning the connection and node setup are still relevant (sections: *Connectivity Specs*, *receiver type*, *Frame IDs*, *UTM Zone Locking*, *Time Systems*, *Logger*).
+ default: true
Receiver Type
-
receiver_type
: This parameter is to select the type of the Septentrio receiver-
gnss
for GNSS receivers. -
ins
for INS receivers. - default:
gnss
-
-
multi_antenna
: Whether or not the Rx has multiple antennas.- default:
false
- default:
Frame IDs
-
frame_id
: name of the ROS tf frame for the Rx, placed in the header of published GNSS messages. It corresponds to the frame of the main antenna.- In ROS, the tf package lets you keep track of multiple coordinate frames over time. The frame ID will be resolved by
tf_prefix
if defined. If a ROS message has a header (all of those we publish do), the frame ID can be found viarostopic echo /topic
, where/topic
is the topic into which the message is being published. - default:
gnss
- In ROS, the tf package lets you keep track of multiple coordinate frames over time. The frame ID will be resolved by
-
imu_frame_id
: name of the ROS tf frame for the IMU, placed in the header of published IMU message- default:
imu
- default:
-
poi_frame_id
: name of the ROS tf frame for the POI, placed in the child frame_id of localization ifins_use_poi
is set totrue
.- default:
base_link
- default:
-
vsm_frame_id
: name of the ROS tf frame for the velocity sensor.- default:
vsm
- default:
-
aux1_frame_id
: name of the ROS tf frame for the aux1 antenna.- default:
aux1
- default:
-
vehicle_frame_id
: name of the ROS tf frame for the vehicle. Default is the same aspoi_frame_id
but may be set otherwise.- default:
base_link
- default:
-
local_frame_id
: name of the ROS tf frame for the local frame.- default:
odom
- default:
-
insert_local_frame
: Wether to insert a local frame to published tf according to ROS REP 105. The transform from the local frame specified bylocal_frame_id
to the vehicle frame specified byvehicle_frame_id
has to be provided, e.g. by odometry. Insertion of the local frame means the transform between local frame and global frame is published instead of transform between vehicle frame and global frame.- default:
false
- default:
-
get_spatial_config_from_tf
: wether to get the spatial config via tf with the above mentioned frame ids. This will override spatial settings of the config file. For receiver typeins
withmulti_antenna
set totrue
all frames have to be provided, withmulti_antenna
set tofalse
,aux1_frame_id
is not necessary. For typegnss
with dual-antenna setup onlyframe_id
,aux1_frame_id
, andpoi_frame_id
are needed. For single-antennagnss
no frames are needed. Keep in mind that tf has a tree structure. Thus,poi_frame_id
is the base for all mentioned frames.- default:
false
- default:
-
use_ros_axis_orientation
Wether to use ROS axis orientations according to ROS REP 103 for body related frames and geographic frames. Body frame directions affect INS lever arms and IMU orientation setup parameters. Geographic frame directions affect orientation Euler angles for INS+GNSS and attitude of dual-antenna GNSS. Ifuse_ros_axis_orientation
is set totrue
, the driver converts between the NED convention (Septentrio: yaw = 0 is north, positive clockwise), and ENU convention (ROS: yaw = 0 is east, positive counterclockwise). There is no conversion when setting this parameter tofalse
and the angles will be consistent with the web GUI in this case.- If set to
false
Septentrios definition is used, i.e., front-right-down body related frames and NED (north-east-down) for orientation frames. - If set to
true
ROS definition is used, i.e., front-left-up body related frames and ENU (east-north-up) for orientation frames. - default:
true
- If set to
UTM zone locking
+ lock_utm_zone
: wether the UTM zone of the initial localization is locked, i.e., this zone is kept even if a zone transition would occur.
+ default: true
Datum
-
datum
: With this command, the datum the coordinates should refer to is selected. With setting it toDefault
, the datum depends on the positioning mode, e.g.WGS84
for standalone positioning.- Since the standardized GGA message does only provide the orthometric height (= MSL height = distance from Earth's surface to geoid) and the geoid undulation (distance from geoid to ellipsoid) for which non-WGS84 datums cannot be specified, it does not affect the GGA message.
- default:
Default
POI-ARP Offset
+ `poi_to_arp`: offsets of the main GNSS antenna reference point (ARP) with respect to the point of interest (POI = marker). Use for static receivers only.
+ The parameters `delta_e`, `delta_n` and `delta_u` are the offsets in the East, North and Up (ENU) directions respectively, expressed in meters.
+ All absolute positions reported by the receiver are POI positions, obtained by subtracting this offset from the ARP. The purpose is to take into account the fact that the antenna may not be located directly on the surveying POI.
+ default: `0.0`, `0.0` and `0.0`
Antenna Attitude Offset
+ `att_offset`: Angular offset between two antennas (Main and Aux) and vehicle frame
+ `heading`: The perpendicular (azimuth) axis can be compensated for by adjusting the `heading` parameter
+ `pitch`: Vertical (elevation) offset can be compensated for by adjusting the `pitch` parameter
+ default: `0.0`, `0.0` (degrees)
Antenna Specs
-
ant_type
: type of your main GNSS antenna- For best positional accuracy, it is recommended to select a type from the list returned by the command
lstAntennaInfo, Overview
. This is the list of antennas for which the receiver can compensate for phase center variation. - By default and if
ant_type
does not match any entry in the list returned bylstAntennaInfo, Overview
, the receiver will assume that the phase center variation is zero at all elevations and frequency bands, and the position will not be as accurate. - default:
Unknown
- For best positional accuracy, it is recommended to select a type from the list returned by the command
-
ant_serial_nr
: serial number of your main GNSS antenna -
ant_aux1_type
andant_aux1_serial_nr
: same for Aux1 antenna
Leap Seconds
-
leap_seconds
: Leap seconds are automatically gathered from the receiver via the SBF blockReceiverTime
. If a log file is used for simulation and this block was not recorded, the number of leap seconds that have been inserted up until the point of ROSaic usage can be set by this parameter.- At the time of writing the code (2020), the GPS time, which is unaffected by leap seconds, was ahead of UTC time by 18 leap seconds. Adapt the
leap_seconds
parameter accordingly as soon as the next leap second is inserted into the UTC time or in case you are using ROSaic for the purpose of simulations.
- At the time of writing the code (2020), the GPS time, which is unaffected by leap seconds, was ahead of UTC time by 18 leap seconds. Adapt the
Polling Periods
-
polling_period.pvt
: desired period in milliseconds between the polling of two consecutivePVTGeodetic
,PosCovGeodetic
,PVTCartesian
andPosCovCartesian
blocks and - if published - between the publishing of two of the corresponding ROS messages (e.g.septentrio_gnss_driver/PVTGeodetic.msg
). Consult firmware manual for allowed periods. If the period is set to a lower value than the receiver is capable of, it will be published with the next higher period. If set to0
, the SBF blocks are output at their natural renewal rate (OnChange
).- Clearly, the publishing of composite ROS messages such as
sensor_msgs/NavSatFix.msg
orgps_msgs/GPSFix.msg
is triggered by the SBF block that arrives last among the blocks of the current epoch. - default:
500
(2 Hz)
- Clearly, the publishing of composite ROS messages such as
-
polling_period.rest
: desired period in milliseconds between the polling of all other SBF blocks and NMEA sentences not addressed by the previous parameter, and - if published - between the publishing of all other ROS messages- default:
500
(2 Hz)
- default:
Time Systems
-
use_gnss_time
:true
if the ROS message headers' unix epoch time field shall be constructed from the TOW/WNC (in the SBF case) and UTC (in the NMEA case) data,false
if those times shall be taken by the driver from ROS time. Ifuse_gnss_time
is set totrue
, it is imperative that the ROS system is synchronized to an NTP time server or PTP clock either via internet or ideally via the Septentrio receiver since the latter serves as a Stratum 1 time server not dependent on an internet connection. If this is not followed, the time stamps may drift apart!- default:
false
- default:
-
ntp_server
: Wether the NTP server shall be activated.- default:
false
- default:
-
ptp_server_clock
: Wether the PTP server slcok hall be activated.- default:
false
- default:
-
latency_compensation
: Rx reports processing latency in PVT and INS blocks. If set totrue
this latency is subtracted from ROS timestamps in related blocks (i.e.,use_gnss_time
set tofalse
). Related blocks are INS, PVT, Covariances, and BaseVectors. In case ofuse_gnss_time
set totrue
, the latency is already compensated within the RX and included in the reported timestamps.- default:
false
- default:
RTK corrections
-
rtk_settings
: determines RTK connection parameters- There are multiple possibilities to feed RTK corrections to the Rx. They may be set simultaneously and the Rx will choose the nearest source.
- a)
ntrip_#
if the Rx has internet access and is able to receieve NTRIP streams from a caster. Up to three NTRIP connections are possible. - b)
ip_server_#
if corrections are to be receieved via TCP/IP for example overData Link
from Septentrio's RxTools is installed on a computer. Up to five IP server connections are possible. - c)
serial_#
if corrections are to be receieved via a serial port for example over radio link from a local RTK base or overData Link
from Septentrio's RxTools installed on a computer. Up to five serial connections are possible.
- a)
-
ntrip_#
: for receiving corretions from an NTRIP caster (#
is from 1 ... 3).-
id
: NTRIP connectionNTR1
,NTR2
, orNTR3
. - default: ""
-
caster
: is the hostname or IP address of the NTRIP caster to connect to. - default: ""
-
caster_port
: IP port of the NTRIP caster. - default: 2021
-
username
: user name for the NTRIP caster. - default: ""
-
pasword
: password for the NTRIP caster. The receiver encrypts the password so that it cannot be read back with the command "getNtripSettings". - default: ""
-
mountpoint
: mount point of the NTRP caster to be used. - default: ""
-
version
: argument specifies which version of the NTRIP protocol to use (v1
orv2
). - default: "v2"
-
tls
: determines wether to use TLS. - default: false
-
fingerprint
: fingerprint to be used if the certificate is self-signed. If the caster’s certificate is known by a publicly-trusted certification authority, fingerprint should be left empty. - default: ""
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: "auto"
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver automatically sends GGA messages if requested by the caster. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
-
ip_server_#
: for receiving corretions via TCP/IP (#
is from 1 ... 5).-
id
: specifies the IP serverIPS1
,IPS2
,IPS3
,IPS4
, orIPS5
. Note that ROSaic will send GGA messages on this connection ifsend_gga
is set, such that in theData Link
application ofRxTools
one just needs to set up a TCP client to the host name as found in the ROSaic parameterdevice
with the port as found inport
. If the latter connection were connection 1 onData Link
, then connection 2 would set up an NTRIP client connecting to the NTRIP caster as specified in the above parameters in order to forward the corrections from connection 2 to connection 1. - default: ""
-
port
: its port number of the connection that ROSaic establishes on the receiver. When selecting a port number, make sure to avoid conflicts with other services. - default: 0
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: ""
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver sends withsec1
. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
-
serial_#
: for receiving corretions via serial connection (#
is from 1 ... 5).-
port
: Serial connectionCOM1
,COM2
,COM3
,USB1
, orUSB2
on which corrections could be forwarded to the Rx from a serially connected radio link modem or viaData Link
for example. - default: ""
-
baud_rate
: sets the baud rate of this port for genuine serial ports, i.e., not relevant for USB connection. - default: 115200
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: "auto"
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver sends withsec1
. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
- There are multiple possibilities to feed RTK corrections to the Rx. They may be set simultaneously and the Rx will choose the nearest source.
INS Specs
+ `ins_spatial_config`: Spatial configuration of INS/IMU. Coordinates according to vehicle related frame directions chosen by `use_ros_axis_orientation` (front-left-up if `true` and front-right-down if `false`).
+ `imu_orientation`: IMU sensor orientation
+ Parameters `theta_x`, `theta_y` and `theta_z` are used to determine the sensor orientation with respect to the vehicle frame. Positive angles correspond to a right-handed (clockwise) rotation of the IMU with respect to its nominal orientation (see below). The order of the rotations is as follows: `theta_z` first, then `theta_y`, then `theta_x`.
+ The nominal orientation is where the IMU is upside down and with the `X axis` marked on the receiver pointing to the front of the vehicle. By contrast, for `use_ros_axis_orientation: true`, nominal orientation is where the `Z axis` of the IMU is pointing upwards and also with the `X axis` marked on the receiver pointing to the front of the vehicle.
+ default: `0.0`, `0.0`, `0.0` (degrees)
+ `poi_lever_arm`: The lever arm from the IMU reference point to a user-defined POI
+ Parameters `delta_x`,`delta_y` and `delta_z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `ant_lever_arm`: The lever arm from the IMU reference point to the main GNSS antenna
+ The parameters `x`,`y` and `z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `vsm_lever_arm`: The lever arm from the IMU reference point to the velocity sensor
+ The parameters `vsm_x`,`vsm_y` and `vsm_z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `ins_initial_heading`: How the receiver obtains the initial INS/GNSS integrated heading during the alignment phase
+ In case it is `auto`, the initial integrated heading is determined from GNSS measurements.
+ In case it is `stored`, the last known heading when the vehicle stopped before switching off the receiver is used as initial heading. Use if vehicle does not move when the receiver is switched off.
+ default: `auto`
+ `ins_std_dev_mask`: Maximum accepted error
+ `att_std_dev`: Configures an output limit on standard deviation of the attitude angles (max error accepted: 5 degrees)
+ `pos_std_dev`: Configures an output limit on standard deviation of the position (max error accepted: 100 meters)
+ default: `5` degrees, `10` meters
+ `ins_use_poi`: Whether or not to use the POI defined in `ins_spatial_config.poi_lever_arm`
+ If true, the point at which the INS navigation solution (e.g. in `insnavgeod` ROS topic) is calculated will be the POI as defined above (`poi_frame_id`), otherwise it'll be the main GNSS antenna (`frame_id`). Has to be set to `true` if tf shall be published.
+ default: `true`
+ `ins_vsm`: Configuration of the velocity sensor measurements. IP server may be used to receive velocity information from ROS or from an external device. Serial connection may be used to receive velocity information from an external device only.
+ `ros`: VSM info received from ROS msgs
+ `source`: Specifies which ROS message type shall be used, options are `odometry` or `twist`. Accordingly, a subscriber is established of the type [`nav_msgs/Odometry.msg`](https://docs.ros2.org/foxy/api/nav_msgs/msg/Odometry.html) or [`geometry_msgs/TwistWithCovarianceStamped.msg`](https://docs.ros2.org/foxy/api/geometry_msgs/msg/TwistWithCovarianceStamped.html) listening on the topics `odometry_vsm` or `twist_vsm` respectively. Only linear velocities are evaluated. Measurements have to be with respect to the frame aligned with the vehicle and defined by `ins_spatial_config.vsm_lever_arm` or tf-frame `vsm_frame_id`, see also comment in [`nav_msgs/Odometry.msg`](https://docs.ros2.org/foxy/api/nav_msgs/msg/Odometry.html) that twist should be specified in `child_frame_id`.
+ default: ""
+ `config`: Defines which measurements belonging to the respective axes are forwarded to the INS. In addition, non-holonomic constraints may be introduced for directions known to be restricted in movement. For example, a vehicle with Ackermann steering is limited in its sidewards and upwards movement. So, even if only motion in x-direction may be measured, zero-velocities for y and z may be sent. Only has to be set if `ins_vsm.ros.source`is set to `odometry` or `twist`.
+ default: []
+ `variances_by_parameter`: Wether variances shall be entered by parameter `ins_vsm.ros.variances` or the values from inside the ROS messages are used. Only has to be set if `ins_vsm.source`is set to `odometry` or `twist`.
+ default: false
+ `variances`: Variances of the respective axes. Only have to be set if `ins_vsm.variances_by_parameter` is set to `true`. Values must be > 0.0, else measurements cannot not be used.
+ default: []
+ `ip_server`:
+ `id`: IP server to receive the VSM info (e.g. `IPS1`). If a TCP stream device (`device.stream_device.tcp`) is set up, this device may be used here, i.e, `id` my be set to the same.
+ default: "IPS5"
+ `port`: TCP port to receive the VSM info. When selecting a port number, make sure to avoid conflicts with other services.
+ default: 24786
+ `keep_open` determines wether this connections to receive VSM shall be kept open on driver shutdown. If set to `true` the Rx will still be able to use external VSM info to improve its localization.
+ default: `true`
+ `serial`:
+ `port`: Serial port to receive the VSM info.
+ default: ""
+ `baud_rate`: Baud rate of the serial port to receive the VSM info.
+ default: 115200
+ `keep_open` determines wether this connections to receive VSM shall be kept open on driver shutdown. If set to `true` the Rx will still be able to use external VSM info to improve its localization.
+ default: `true`
Logger
+ `activate_debug_log`: `true` if ROS logger level shall be set to debug.
-
Parameters Configuring (Non-)Publishing of ROS Messages
NMEA/SBF Messages to be Published
-
publish.auto_publish
:true
to automatically publish messages for which SBF blocks and NMEA sentences are available. Only applicable ifconigure_rx
isfalse
. Iftf_ecef
shall be published, this must be explicitily set to true, else tf in UTM is published if available. -
publish.publish_only_valid
:true
to publish SBF blocks only if timestamp (TOW) is valid. -
publish.gpgga
:true
to publishnmea_msgs/GPGGA.msg
messages into the topic/gpgga
-
publish.gprmc
:true
to publishnmea_msgs/GPRMC.msg
messages into the topic/gprmc
-
publish.gpgsa
:true
to publishnmea_msgs/GPGSA.msg
messages into the topic/gpgsa
-
publish.gpgsv
:true
to publishnmea_msgs/GPGSV.msg
messages into the topic/gpgsv
-
publish.measepoch
:true
to publishseptentrio_gnss_driver/MeasEpoch.msg
messages into the topic/measepoch
-
publish.galauthstatus
:true
to publishseptentrio_gnss_driver/GALAuthStatus.msg
messages into the topic/galauthstatus
and corresponding/diganostics
-
publish.aimplusstatus
:true
to publishseptentrio_gnss_driver/RFStatus.msg
messages into the topic/rfstatus
,septentrio_gnss_driver/AIMPlusStatus.msg
messages into/aimplusstatus
and corresponding/diganostics
. Some information is only available with active OSNMA. -
publish.pvtcartesian
:true
to publishseptentrio_gnss_driver/PVTCartesian.msg
messages into the topic/pvtcartesian
-
publish.pvtgeodetic
:true
to publishseptentrio_gnss_driver/PVTGeodetic.msg
messages into the topic/pvtgeodetic
-
publish.basevectorcart
:true
to publishseptentrio_gnss_driver/BaseVectorCart.msg
messages into the topic/basevectorcart
-
publish.basevectorgeod
:true
to publishseptentrio_gnss_driver/BaseVectorGeod.msg
messages into the topic/basevectorgeod
-
publish.poscovcartesian
:true
to publishseptentrio_gnss_driver/PosCovCartesian.msg
messages into the topic/poscovcartesian
-
publish.poscovgeodetic
:true
to publishseptentrio_gnss_driver/PosCovGeodetic.msg
messages into the topic/poscovgeodetic
-
publish.velcovcartesian
:true
to publishseptentrio_gnss_driver/VelCovCartesian.msg
messages into the topic/velcovcartesian
-
publish.velcovgeodetic
:true
to publishseptentrio_gnss_driver/VelCovGeodetic.msg
messages into the topic/velcovgeodetic
-
publish.atteuler
:true
to publishseptentrio_gnss_driver/AttEuler.msg
messages into the topic/atteuler
-
publish.attcoveuler
:true
to publishseptentrio_gnss_driver/AttCovEuler.msg
messages into the topic/attcoveuler
-
publish.gpst
:true
to publishsensor_msgs/TimeReference.msg
messages into the topic/gpst
-
publish.navsatfix
:true
to publishsensor_msgs/NavSatFix.msg
messages into the topic/navsatfix
-
publish.gpsfix
:true
to publishgps_msgs/GPSFix.msg
messages into the topic/gpsfix
-
publish.pose
:true
to publishgeometry_msgs/PoseWithCovarianceStamped.msg
messages into the topic/pose
-
publish.twist
:true
to publishgeometry_msgs/TwistWithCovarianceStamped.msg
messages into the topics/twist
and/twist_ins
respectively -
publish.diagnostics
:true
to publishdiagnostic_msgs/DiagnosticArray.msg
messages into the topic/diagnostics
-
publish.insnavcart
:true
to publishseptentrio_gnss_driver/INSNavCart.msg
message into the topic/insnavcart
-
publish.insnavgeod
:true
to publishseptentrio_gnss_driver/INSNavGeod.msg
message into the topic/insnavgeod
-
publish.extsensormeas
:true
to publishseptentrio_gnss_driver/ExtSensorMeas.msg
message into the topic/extsensormeas
-
publish.imusetup
:true
to publishseptentrio_gnss_driver/IMUSetup.msg
message into the topic/imusetup
-
publish.velsensorsetup
:true
to publishseptentrio_gnss_driver/VelSensorSetup.msgs
message into the topic/velsensorsetup
-
publish.exteventinsnavcart
:true
to publishseptentrio_gnss_driver/ExtEventINSNavCart.msgs
message into the topic/exteventinsnavcart
-
publish.exteventinsnavgeod
:true
to publishseptentrio_gnss_driver/ExtEventINSNavGeod.msgs
message into the topic/exteventinsnavgeod
-
publish.imu
:true
to publishsensor_msgs/Imu.msg
message into the topic/imu
-
publish.localization
:true
to publishnav_msgs/Odometry.msg
message into the topic/localization
-
publish.tf
:true
to broadcast tf of localization.ins_use_poi
must also be set to true to publish tf. Note that only one ofpublish.tf
orpublish.tf_ecef
may betrue
.
-
publish.localization_ecef
:true
to publishnav_msgs/Odometry.msg
message into the topic/localization
related to ECEF frame. -
publish.tf_ecef
:true
to broadcast tf of localization related to ECEF frame.ins_use_poi
must also be set to true to publish tf. Note that only one ofpublish.tf
orpublish.tf_ecef
may betrue
.
-
ROS Topic Publications
A selection of NMEA sentences, the majority being standardized sentences, and proprietary SBF blocks is translated into ROS messages, partly generic and partly custom, and can be published at the discretion of the user into the following ROS topics. All published ROS messages, even custom ones, start with a ROS generic header std_msgs/Header.msg
, which includes the receiver time stamp as well as the frame ID, the latter being specified in the ROS parameter frame_id
.
Available ROS Topics
-
/gpgga
: publishesnmea_msgs/Gpgga.msg
- converted from the NMEA sentence GGA. -
/gprmc
: publishesnmea_msgs/Gprmc.msg
- converted from the NMEA sentence RMC. -
/gpgsa
: publishesnmea_msgs/Gpgsa.msg
- converted from the NMEA sentence GSA. -
/gpgsv
: publishesnmea_msgs/Gpgsv.msg
- converted from the NMEA sentence GSV. -
/measepoch
: publishes custom ROS messageseptentrio_gnss_driver/MeasEpoch.msg
, corresponding to the SBF blockMeasEpoch
.
-
/galauthstatus
: publishes custom ROS messageseptentrio_gnss_driver/GALAuthStatus.msg
, corresponding to the SBF blockGALAuthStatus
. -
/rfstatus
: publishes custom ROS messageseptentrio_gnss_driver/RFStatus.msg
, compiled from the SBF blockRFStatus
. -
/aimplusstatus
: publishes custom ROS messageseptentrio_gnss_driver/AIMPlusStatus.msg
, reporting status of AIM+. Converted from SBF blocksRFStatus
and optionallyGALAuthStatus
. For the latter OSNMA has to be activated. -
/pvtcartesian
: publishes custom ROS messageseptentrio_gnss_driver/PVTCartesian.msg
, corresponding to the SBF blockPVTCartesian
(GNSS case) orINSNavGeod
(INS case). -
/pvtgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/PVTGeodetic.msg
, corresponding to the SBF blockPVTGeodetic
(GNSS case) orINSNavGeod
(INS case). -
/basevectorcart
: publishes custom ROS messageseptentrio_gnss_driver/BaseVectorCart.msg
, corresponding to the SBF blockBaseVectorCart
. -
/basevectorgeod
: publishes custom ROS messageseptentrio_gnss_driver/BaseVectorGeod.msg
, corresponding to the SBF blockBaseVectorGeod
. -
/poscovcartesian
: publishes custom ROS messageseptentrio_gnss_driver/PosCovCartesian.msg
, corresponding to SBF blockPosCovCartesian
(GNSS case) orINSNavGeod
(INS case). -
/poscovgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/PosCovGeodetic.msg
, corresponding to SBF blockPosCovGeodetic
(GNSS case) orINSNavGeod
(INS case). -
/velcovcartesian
: publishes custom ROS messageseptentrio_gnss_driver/VelCovCartesian.msg
, corresponding to SBF blockVelCovCartesian
(GNSS case). -
/velcovgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/VelCovGeodetic.msg
, corresponding to SBF blockVelCovGeodetic
(GNSS case). -
/atteuler
: publishes custom ROS messageseptentrio_gnss_driver/AttEuler.msg
, corresponding to SBF blockAttEuler
. -
/attcoveuler
: publishes custom ROS messageseptentrio_gnss_driver/AttCovEuler.msg
, corresponding to the SBF blockAttCovEuler
. -
/gpst
(for GPS Time): publishes generic ROS messagesensor_msgs/TimeReference.msg
, converted from thePVTGeodetic
(GNSS case) orINSNavGeod
(INS case) block's GPS time information, stored in its block header. -
/navsatfix
: publishes generic ROS messagesensor_msgs/NavSatFix.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
(GNSS case) orINSNavGeod
(INS case)- The ROS message
sensor_msgs/NavSatFix.msg
can be fed directly into thenavsat_transform_node
of the ROS navigation stack.
- The ROS message
-
/gpsfix
: publishes generic ROS messagegps_msgs/GPSFix.msg
, which is much more detailed thansensor_msgs/NavSatFix.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
,ChannelStatus
,MeasEpoch
,AttEuler
,AttCovEuler
,VelCovGeodetic
,DOP
(GNSS case) orINSNavGeod
,ChannelStatus
,MeasEpoch
,DOP
(INS case). In order to publish heading information, the field dip is diverted from its intended meaning an populated with the heading angle and err_dip with its uncertainty.- INS case: Beware, in order to allow a high update rate,
ChannelStatus
,MeasEpoch
, andDOP
are not time aligned, i.e., they might contain outdated information.
- INS case: Beware, in order to allow a high update rate,
-
/pose
: publishes generic ROS messagegeometry_msgs/PoseWithCovarianceStamped.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
,AttEuler
,AttCovEuler
(GNSS case) orINSNavGeod
(INS case).- Note that GNSS provides absolute positioning, while robots are often localized within a local level cartesian frame. The pose field of this ROS message contains position with respect to the absolute ENU frame (longitude, latitude, height), i.e. not a cartesian frame, while the orientation is with respect to a vehicle-fixed (e.g. for mosaic-x5 in moving base mode via the command
setAttitudeOffset
, ...) !local! NED frame or ENU frame ifuse_ros_axis_directions
is settrue
. Thus the orientation is !not! given with respect to the same frame as the position is given in. The cross-covariances are hence set to 0.
- Note that GNSS provides absolute positioning, while robots are often localized within a local level cartesian frame. The pose field of this ROS message contains position with respect to the absolute ENU frame (longitude, latitude, height), i.e. not a cartesian frame, while the orientation is with respect to a vehicle-fixed (e.g. for mosaic-x5 in moving base mode via the command
-
/twist
: publishes generic ROS messagegeometry_msgs/TwistWithCovarianceStamped.msg
, converted from the SBF blocksPVTGeodetic
andVelCovGeodetic
. -
/twist_ins
: publishes generic ROS messagegeometry_msgs/TwistWithCovarianceStamped.msg
, converted from SBF blockINSNavGeod
. -
/insnavcart
: publishes custom ROS messageseptentrio_gnss_driver/INSNavCart.msg
, corresponding to SBF blockINSNavCart
-
/insnavgeod
: publishes custom ROS messageseptentrio_gnss_driver/INSNavGeod.msg
, corresponding to SBF blockINSNavGeod
-
/extsensormeas
: publishes custom ROS messageseptentrio_gnss_driver/ExtSensorMeas.msg
, corresponding to SBF blockExtSensorMeas
. -
/imusetup
: publishes custom ROS messageseptentrio_gnss_driver/IMUSetup.msg
, corresponding to SBF blockIMUSetup
. -
/velsensorsetup
: publishes custom ROS messageseptentrio_gnss_driver/VelSensorSetup.msg
corresponding to SBF blockVelSensorSetup
. -
/exteventinsnavcart
: publishes custom ROS messageseptentrio_gnss_driver/INSNavCart.msg
, corresponding to SBF blockExtEventINSNavCart
. -
/exteventinsnavgeod
: publishes custom ROS messageseptentrio_gnss_driver/INSNavGeod.msg
, corresponding to SBF blockExtEventINSNavGeod
. -
/diagnostics
: accepts generic ROS messagediagnostic_msgs/DiagnosticArray.msg
, converted from the SBF blocksQualityInd
,ReceiverStatus
andReceiverSetup
-
/imu
: accepts generic ROS messagesensor_msgs/Imu.msg
, converted from the SBF blocksExtSensorMeas
andINSNavGeod
.- The ROS message
sensor_msgs/Imu.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
-
/localization
: accepts generic ROS messagenav_msgs/Odometry.msg
, converted from the SBF blockINSNavGeod
and transformed to UTM.- The ROS message
nav_msgs/Odometry.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
-
/localization_ecef
: accepts generic ROS messagenav_msgs/Odometry.msg
, converted from the SBF blocksINSNavCart
andINSNavGeod
.- The ROS message
nav_msgs/Odometry.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
Suggestions for Improvements
Some Ideas
+ Equip ROSaic with an NTRIP client such that it can forward corrections to the receiver independently of `Data Link`.Adding New SBF Blocks or NMEA Sentences
Steps to Follow
Is there an SBF or NMEA message that is not being addressed while being important to your application? If yes, follow these steps: 1. Find the log reference of interest in the publicly accessible, official documentation. Hence select the reference guide file, e.g. for mosaic-x5 in the [product support section for mosaic-X5](https://www.septentrio.com/en/support/mosaic/mosaic-x5), Chapter 4, of Septentrio's homepage. 2. SBF: Add a new `.msg` file to the `../msg` folder. And modify the `../CMakeLists.txt` file by adding a new entry to the `add_message_files` section. 3. Add msg header and typedef to `typedefs.hpp`. 4. Parsers: - SBF: Add a parser to the `sbf_blocks.hpp` file. - NMEA: Construct two new parsing files such as `gpgga.cpp` to the `../src/septentrio_gnss_driver/parsers/nmea_parsers` folder and one such as `gpgga.hpp` to the `../include/septentrio_gnss_driver/parsers/nmea_parsers` folder. 5. Processing the message/block: - SBF: Extend the `SbfId` enumeration in the `message_handler.hpp` file with a new entry. - SBF: Extend the SBF switch-case in `message_handler.cpp` file with a new case. - NMEA: Extend the `nmeaMap_` in the `message_handler.hpp` file with a new pair. - NMEA: Extend the NMEA switch-case in `message_handler.cpp` file with a new case. 6. Create a new `publish/..` ROSaic parameter in the `../config/rover.yaml` file and create a boolean variable `publish_xxx` in the struct in the `settings.h` file. Parse the parameter in the `rosaic_node.cpp` file. 7. Add SBF block or NMEA to data stream setup in `communication_core.cpp` (function `configureRx()`).CONTRIBUTING
Repository Summary
Checkout URI | https://github.com/septentrio-gnss/septentrio_gnss_driver.git |
VCS Type | git |
VCS Version | master |
Last Updated | 2024-08-04 |
Dev Status | MAINTAINED |
CI status | No Continuous Integration |
Released | RELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Packages
Name | Version |
---|---|
septentrio_gnss_driver | 1.4.1 |
README
ROSaic = ROS + mosaic
Overview
This repository hosts drivers for ROS 1 (Melodic and Noetic) and ROS 2 (Foxy, Galactic, Humble, Iron, Rolling, and beyond) - written in C++ - that work with mosaic and AsteRx - two of Septentrio's cutting-edge GNSS and GNSS/INS receiver families - and beyond. Both ROS 1 and ROS 2 are supported within one repository.
Main Features:
- Supports Septentrio's single antenna GNSS, dual antenna GNSS and INS receivers
- Supports serial, TCP/IP and USB connections, the latter being compatible with both serial (RNDIS) and TCP/IP protocols
- Supports several ASCII (including key NMEA ones) messages and SBF (Septentrio Binary Format) blocks
- Reports status of AIM+ (Advanced Interference Mitigation including OSNMA) anti-jamming and anti-spoofing.
- Can publish nav_msgs/Odometry
message for INS receivers
- Can blend SBF blocks PVTGeodetic
, PosCovGeodetic
, ChannelStatus
, MeasEpoch
, AttEuler
, AttCovEuler
, VelCovGeodetic
and DOP
in order to publish gps_common/GPSFix
and sensor_msgs/NavSatFix
messages
- Supports optional axis convention conversion since Septentrio follows the NED convention, whereas ROS is ENU.
- Easy configuration of multiple RTK corrections simultaneously (via NTRIP, TCP/IP stream, or serial)
- Can play back PCAP capture logs for testing purposes
- Tested with the mosaic-X5, mosaic-H, AsteRx-m3 Pro+, AsteRx-SB Pro+ and the AsteRx-SBi3 Pro receiver
- Easy to add support for more log types
Please let the maintainers know of your success or failure in using the driver with other devices so we can update this page appropriately.
Usage
Important notes
Notes Before Usage
+ The driver assumes that our anonymous access to the Rx grants us full control rights. This should be the case by default, and can otherwise be changed with the `setDefaultAccessLevel` command. If user control is in place user credentials can be given by parameters `login.user` and `login.password`. + Note for serial connection: Make sure the user is part of the `dialout` group to have full access to the serial ports. If not, add it for example with `sudo adduser [username] dialout`. + Note for setting hw_flow_control: This is a string parameter, setting it to off without quotes leads to the fact that it is not read in correctly. + Note for setting ant_(aux1)_serial_nr: This is a string parameter, numeric only serial numbers should be put in quotes. If this is not done a warning will be issued and the driver tries to parse it as integer. + Note for usage of NTRIP via USB with virtual ethernet (RNDIS): RNDIS provides a virtual network connection only between the receiver and the PC. First outgoing network access via USB has to be activated, which is explained [here](https://www.youtube.com/watch?v=bUt8cL9Ue1Y). Next setup internet sharing under Linux by setting the connection of the virtual network interface (the name should be something like enx1a3202991545) to "Shared to other computers". + Once the build or binary installation is finished, adapt the `config/rover.yaml` file according to your needs or assemble a new one, examples for GNSS specific parameters `config/gnss.yaml` and INS `config/ins.yaml` are also available. Specify the communication parameters, the ROS messages to be published, the frequency at which the latter should happen etc.ROS 1: Launch the `launch/rover.launch` to use `rover.yaml` or add `param_file_name:=xxx` to use a custom config.
ROS 2: Launch as composition with `ros2 launch septentrio_gnss_driver rover.launch.py` to use `rover.yaml` or add `file_name:=xxx.yaml` to use a custom config. Alternatively launch as node with `ros2 launch septentrio_gnss_driver rover_node.launch.py` to use `rover_node.yaml` or add `file_name:=xxx.yaml` to use a custom config. Specify the communication parameters, the ROS messages to be published, the frequency at which the latter should happen etc. + Besides the aforementioned config file `rover.yaml` containing all parameters, specialized launch files for GNSS `config/gnss.yaml` and INS `config/ins.yaml` respectively contain only the relevant parameters in each case. - NOTE: Unless `configure_rx` is set to `false`, this driver will overwrite the previous values of the parameters, even if the value is left to zero in the "yaml" file. + The driver was developed and tested with firmware versions >= 4.10.0 for GNSS and >= 1.3.2 for INS. Receivers with older firmware versions are supported but some features may not be available. Known limitations are: * GNSS with firmware < 4.10.0 does not support IP over USB. * GNSS with firmware < 4.12.1 does not support OSNMA. * GNSS with firmware < 4.14 does not support PTP server clock. * INS with firmware <= 1.2.0 does not support velocity aiding. * INS with firmware <= 1.2.0 does not support setting of initial heading. * INS with firmware < 1.3.2 does not support NTP. * INS with firmware < 1.4 does not support OSNMA. * INS with firmware < 1.4.1 does not support improved VSM handling allowing for unknown variances. * INS does not support PTP server clock as of now. + Known issues: * UDP over USB: Blocks are sent twice on GNSS with firmware <= 4.12.1 and INS with firmware <= 1.4. For GNSS it is fixed in version 4.14 (released on June 15th 2023), for INS is fixed in 1.4.1 (released November 2023). + If `use_ros_axis_orientation` to `true` axis orientations are converted by the driver between NED (Septentrio: yaw = 0 is north, positive clockwise) and ENU (ROS: yaw = 0 is east, positive counterclockwise). There is no conversion when setting this parameter to `false` and the angles will be consistent with the web GUI in this case. :
``` # Example configuration Settings for the Rover Rx device: tcp://192.168.3.1:28784 serial: baudrate: 921600 hw_flow_control: "off" stream_device: tcp: ip_server: "" port: 0 udp: ip_server: "" port: 0 unicast_ip: "" configure_rx: true custom_commands_file: "" login: user: "" password: "" osnma: mode: "off" ntp_server: "" keep_open: true frame_id: gnss imu_frame_id: imu poi_frame_id: base_link vsm_frame_id: vsm aux1_frame_id: aux1 vehicle_frame_id: base_link insert_local_frame: false local_frame_id: odom get_spatial_config_from_tf: true lock_utm_zone: true use_ros_axis_orientation: true receiver_type: gnss datum: Default poi_to_arp: delta_e: 0.0 delta_n: 0.0 delta_u: 0.0 att_offset: heading: 0.0 pitch: 0.0 ant_type: Unknown ant_aux1_type: Unknown ant_serial_nr: Unknown ant_aux1_serial_nr: Unknown leap_seconds: 18 polling_period: pvt: 500 rest: 500 use_gnss_time: false ntp_server: false ptp_server_clock: false latency_compensation: false rtk_settings: ntrip_1: id: "NTR1" caster: "1.2.3.4" caster_port: 2101 username: "Asterix" password: "password" mountpoint: "mtpt1" version: "v2" tls: true fingerprint: "AA:BB:56:78:90:12: ... 78:90:12:34" rtk_standard: "RTCMv3" send_gga: "auto" keep_open: true ntrip_2: id: "NTR3" caster: "5.6.7.8" caster_port: 2101 username: "Obelix" password: "password" mountpoint: "mtpt2" version: "v2" tls: false fingerprint: "" rtk_standard: "RTCMv2" send_gga: "auto" keep_open: true ip_server_1: id: "IPS3" port: 28785 rtk_standard: "RTCMv2" send_gga: "auto" keep_open: true ip_server_2: id: "IPS5" port: 28786 rtk_standard: "CMRv2" send_gga: "auto" keep_open: true serial_1: port: "COM1" baud_rate: 230400 rtk_standard: "auto" send_gga: "sec1" keep_open: true serial_2: port: "COM2" baud_rate: 230400 rtk_standard: "auto" send_gga: "off" keep_open: true publish: # For both GNSS and INS Rxs auto_publish: false publish_only_valid: false navsatfix: false gpsfix: true gpgga: false gprmc: false gpst: false measepoch: false pvtcartesian: false pvtgeodetic: true basevectorcart: false basevectorgeod: false poscovcartesian: false poscovgeodetic: true velcovcartesian: false velcovgeodetic: false atteuler: true attcoveuler: true pose: false twist: false diagnostics: false aimplusstatus: true galauthstatus: false # For GNSS Rx only gpgsa: false gpgsv: false # For INS Rx only insnavcart: false insnavgeod: false extsensormeas: false imusetup: false velsensorsetup: false exteventinsnavcart: false exteventinsnavgeod: false imu: false localization: false tf: false localization_ecef: false tf_ecef: false # INS-Specific Parameters ins_spatial_config: imu_orientation: theta_x: 0.0 theta_y: 0.0 theta_z: 0.0 poi_lever_arm: delta_x: 0.0 delta_y: 0.0 delta_z: 0.0 ant_lever_arm: x: 0.0 y: 0.0 z: 0.0 vsm_lever_arm: vsm_x: 0.0 vsm_y: 0.0 vsm_z: 0.0 ins_initial_heading: auto ins_std_dev_mask: att_std_dev: 5.0 pos_std_dev: 10.0 ins_use_poi: true ins_vsm: source: "twist" config: [true, false, false] variances_by_parameter: true variances: [0.1, 0.0, 0.0] ip_server: id: "IPS2" port: 28787 keep_open: true serial: port: "COM3" baud_rate: 115200 keep_open: true # Logger activate_debug_log: false ``` In order to launch ROSaic, the launch command for ROS 1 reads `roslaunch septentrio_gnss_driver rover.launch param_file_name:=rover` and for ROS 2 reads `ros2 launch septentrio_gnss_driver rover.py file_name:=rover.yaml`. If multiple port are utilized for RTK corrections and/or VSM, which shall be closed after driver shutdown (`keep_open: false`), make sure to give the driver enough time to gracefully shutdown as closing the ports takes a few seconds. For ROS 2, this can be accomplished in the launch files by increasing the timeout of SIGTERM (e.g. `sigterm_timeout = '10',`), see example launch files`rover.launch.py`and `rover_node.launch.py` respectively.
Dependencies
ROS
This driver functions on ROS 1 [Melodic](https://wiki.ros.org/melodic/Installation/Ubuntu) and [Noetic](https://wiki.ros.org/noetic/Installation/Ubuntu) or ROS 2 [Foxy](https://docs.ros.org/en/foxy/Installation.html), [Galactic](https://docs.ros.org/en/galactic/Installation.html), [Humble](https://docs.ros.org/en/humble/Installation.html) [Iron](https://docs.ros.org/en/iron/Installation.html), [Jazzy](https://docs.ros.org/en/jazzy/Installation.html), and [Rolling](https://docs.ros.org/en/rolling/Installation.html) (Ubuntu 18.04, 20.04, 22.04, or 24.04 respectively). It is thus necessary to install the ROS version that has been designed for your Linux distro.Binary Install
The binary release is available for ROS 1 (Melodic and Noetic) and ROS 2 (Foxy, Galactic, Humble, Iron, Jazzy, and Rolling). Since Melodic, Foxy, and Galactic are EOL, only Noetic, Humble, Iron, Jazzy, and Rolling will get updated versions. To install the binary package, simply run `sudo apt-get install ros-$ROS_DISTRO-septentrio-gnss-driver`.Build from source
Build
+ Building ROSaic only works from C++17 onwards due to the usage of std::any() etc. #### Dependencies for development Additional ROS packages have to be installed for the NMEA and GPSFix messages.ROS 1: `sudo apt install ros-$ROS_DISTRO-nmea-msgs ros-$ROS_DISTRO-gps-common`.
ROS 2: `sudo apt install ros-$ROS_DISTRO-nmea-msgs ros-$ROS_DISTRO-gps-msgs`.
The serial and TCP/IP communication interface of the ROS driver is established by means of the [Boost C++ library](https://www.boost.org/). In the unlikely event that the below installation instructions fail to install Boost on the fly, please install the Boost libraries via
`sudo apt install libboost-all-dev`.
Conversions from LLA to UTM are incorporated through [GeographicLib](https://geographiclib.sourceforge.io/). Install the necessary headers via
`sudo apt install libgeographic-dev`
or
`sudo apt install libgeographiclib-dev`
since Ubunutu 24.04. respectively.
Compatiblity with PCAP captures are incorporated through [pcap libraries](https://github.com/the-tcpdump-group/libpcap). Install the necessary headers via
`sudo apt install libpcap-dev`.
#### ROS 1 For ROS 1, the package can be built from source using [`catkin_tools`](https://catkin-tools.readthedocs.io/en/latest/installing.html), where the latter can be installed using the command `sudo apt-get install python-catkin-tools` for Melodic or `sudo apt-get install python3-catkin-tools` for Noetic. The typical `catkin_tools` [workflow](https://catkin-tools.readthedocs.io/en/latest/quick_start.html) should suffice: ``` source /opt/ros/${ROS_DISTRO}/setup.bash # In case you do not use the default shell of Ubuntu, you need to source another script, e.g. setup.sh. mkdir -p ~/septentrio/src # Note: Change accordingly depending on where you want your package to be installed. cd ~/septentrio catkin init # Initialize with a hidden marker file catkin config --cmake-args -DCMAKE_BUILD_TYPE=RelWithDebInfo # CMake build types pass compiler-specific flags to your compiler. This type amounts to a release with debug info, while keeping debugging symbols and doing optimization. I.e. for GCC the flags would be -O2, -g and -DNDEBUG. cd src git clone https://github.com/septentrio-gnss/septentrio_gnss_driver rosdep install . --from-paths -i # Might raise "rosaic: Unsupported OS [mint]" warning, if your OS is Linux Mint, since rosdep does not know Mint (and possible other OSes). In that case, add the "--os=ubuntu:saucy" option to "fool" rosdep into believing it faces some Ubuntu version. The syntax is "--os=OS_NAME:OS_VERSION". catkin build # If catkin cannot find empty, tell catkin to use Python 3 by adding "-DPYTHON_EXECUTABLE=/usr/bin/python3". echo "source ~/septentrio/devel/setup.bash" >> ~/.bashrc # It is convenient if the ROS environment variable is automatically added to your bash session every time a new shell is launched. Again, this works for bash shells only. Also note that if you have more than one ROS distribution installed, ~/.bashrc must only source the setup.bash for the version you are currently using. source ~/.bashrc ``` #### ROS 2 For ROS 2, The package has to be built from source using [`colcon`](https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Colcon-Tutorial.html): ``` source /opt/ros/${ROS_DISTRO}/setup.bash # In case you do not use the default shell of Ubuntu, you need to source another script, e.g. setup.sh. mkdir -p ~/septentrio/src # Note: Change accordingly depending on where you want your package to be installed. cd ~/septentrio/src git clone https://github.com/septentrio-gnss/septentrio_gnss_driver git checkout ros2 # Install mentioned dependencies (`sudo apt install ros-$ROS_DISTRO-nmea_msgs ros-$ROS_DISTRO-gps-msgs libboost-all-dev libpcap-dev libgeographic-dev`) colcon build --packages-up-to septentrio_gnss_driver # Be sure to call colcon build in the root folder of your workspace. Launch files are installed, so changing them on the fly in the source folder only works with installing by symlinks: add `--symlink-install` echo "source ~/septentrio/devel/setup.bash" >> ~/.bashrc # It is convenient if the ROS environment variable is automatically added to your bash session every time a new shell is launched. Again, this works for bash shells only. Also note that if you have more than one ROS distribution installed, ~/.bashrc must only source the setup.bash for the version you are currently using. source ~/.bashrc ``` Run tests ``` colcon test --packages-select septentrio_gnss_driver --event-handlers console_direct+ ```
Inertial Navigation System (INS): Basics
- An Inertial Navigation System (INS) is a device which takes the rotation and acceleration solutions as obtained from its Inertial Measurement Unit (IMU) and combines those with position and velocity information from the GNSS module. Compared to a GNSS system with 7D or 8D (dual-antenna systems) phase space solutions, the combined, Kalman-filtered 9D phase space solution (3 for position, 3 for velocity, 3 for orientation) of an INS is more accurate, more precise and more stable against GNSS outages.
-
The IMU is typically made up of a 3-axis accelerometer, a 3-axis gyroscope and sometimes a 3-axis magnetometer and measures the system's angular rate and acceleration.
Measure and Compensate for IMU-Antenna Lever Arm
- The IMU-antenna lever-arm is the relative position between the IMU reference point and the GNSS Antenna Reference Point (ARP), measured in the vehicle frame.
- In case of AsteRx SBi3, the IMU reference point is clearly marked on the top panel of the receiver. It is important to compensate for the effect of the lever arm, otherwise the receiver may not be able to calculate an accurate INS position.
- The IMU/antenna position can be changed by specifying the lever arm's
x
,y
andz
parameters in theconfig.yaml
file under theins_spatial_config.ant_lever_arm
parameter.
Compensate for IMU Orientation
+ It is important to take into consideration the mounting direction of the IMU in the body frame of the vehicle. For e.g. when the receiver is installed horizontally with the front panel facing the direction of travel, we must compensate for the IMU’s orientation to make sure the IMU reference frame is aligned with the vehicle reference frame. The IMU position and orientation is printed on the top panel, cf. image below. + The IMU's orientation can be changed by specifying the orientation anglestheta_x
,theta_y
andtheta_z
in theconfig.yaml
file underins_spatial_config.imu_orientation
+ The below image illustrates the orientation of the IMU reference frame with the associated IMU orientation for the depicted installation. Note that foruse_ros_axis_orientation: true
sensor_default is the top left position. -
These Steps should be followed to configure the receiver in INS integration mode:
- Specify
receiver_type: INS
- Specify the orientation of the IMU sensor with respect to your vehicle, using the
ins_spatial_config.imu_orientation
parameter. - Specify the IMU-antenna lever arm in the vehicle reference frame. This is the vector starting from the IMU reference point to the ARP of the main GNSS antenna. This can be done by means of the
ins_spatial_config.ant_lever_arm
parameter. - Specify
ins_spatial_config.vsm_lever_arm
if measurements of a velocity sensor is available. - Alternatively the lever arms may be specified via tf. Set
get_spatial_config_from_tf
totrue
in this case. - If the point of interest is neither the IMU nor the ARP of the main GNSS antenna, the vector between the IMU and the point of interest can be provided with the
ins_solution/poi_lever_arm
parameter.
- Specify
For further more information about Septentrio receivers, visit Septentrio support resources or check out the user manual and reference guide of the AsteRx SBi3 receiver.
ROSaic Parameters
The following is a list of ROSaic parameters found in the config/rover.yaml
file. Note, that in the following nested parameters are depicted in ROS 2 style, i.e., using a .
as delimiter, whereas in ROS 1 the delimiter is a /
.
* Parameters Configuring Communication Ports and Processing of GNSS and INS Data
Connectivity Specs
-
device
: location of main device connection. This interface will be used for setup communication and VSM data for INS. Incoming data streams of SBF blocks and NMEA sentences are recevied either via this interface or a static IP server for TCP and/or UDP. The former will be utilized if sectionstream_device.tcp
andstream_device.udp
are not configured.-
serial:xxx
format for serial connections,where xxx is the device node, e.g.serial:/dev/ttyS0
. If using serial over USB, it is recommended to specify the port by ID as the Rx may get a different ttyXXX on reconnection, e.g.serial:/dev/serial/by-id/usb-Septentrio_Septentrio_USB_Device_xyz
. -
file_name:path/to/file.sbf
format for publishing from an SBF log. When reading from a file,use_gnss_time
is automatically set to true, since constructing the time stamps from ROS time would not match the data. If the sbf log does not containReceiverTime
, parameterleap_seconds
must be set manually. -
file_name:path/to/file.pcap
format for publishing from PCAP capture. When reading from a file,use_gnss_time
is automatically set to true, since constructing the time stamps from ROS time would not match the data. If the pcap log does not containReceiverTime
, parameterleap_seconds
must be set manually.- Regarding the file path, ROS_HOME=`pwd` in front of
roslaunch septentrio...
might be useful to specify that the node should be started using the executable's directory as its working-directory.
- Regarding the file path, ROS_HOME=`pwd` in front of
-
tcp://host:port
format for TCP/IP connections-
28784
should be used as the default (command) port for TCP/IP connections. If another port is specified, the receiver needs to be (re-)configured via the Web Interface before ROSaic can be used. - An RNDIS IP interface is provided via USB, assigning the address
192.168.3.1
to the receiver. This should work on most modern Linux distributions. To verify successful connection, open a web browser to access the web interface of the receiver using the IP address192.168.3.1
.
-
- default:
tcp://192.168.3.1:28784
-
-
serial
: specifications for serial communication-
baudrate
: serial baud rate to be used in a serial connection. Ensure the provided rate is sufficient for the chosen SBF blocks. For example, activating MeasEpoch (also necessary for /gpsfix) may require up to almost 400 kBit/s. -
rx_serial_port
: determines to which (virtual) serial port of the Rx we want to get connected to, e.g. USB1 or COM1 -
hw_flow_control
: specifies whether the serial (the Rx's COM ports, not USB1 or USB2) connection to the Rx should have UART hardware flow control enabled or not-
off
to disable UART hardware flow control,RTS|CTS
to enable it
-
- default:
921600
,USB1
,off
-
-
stream_device
: If left unconfigured, by defaultdevice
is utilized for the data streams. Withinstream_device
static IP servers may be defined instead. In config mode (configure_rx
set totrue
), TCP will be prioritized over UDP. If Rx is pre-configured, both may be set simultaneously.-
tcp
: specifications for static TCP server of SBF blocks and NMEA sentences.-
ip_server
: IP server of Rx to be used, e.g. “IPS1”. -
port
: UDP destination port.
-
-
udp
: specifications for low latency UDP reception of SBF blocks and NMEA sentences.-
ip_server
: IP server of Rx to be used, e.g. “IPS1”. -
port
: UDP destination port. -
unicast_ip
: Set to computer's IP to use unicast (optional). If not set multicast will be used.
-
-
-
login
: credentials for user authentication to perform actions not allowed to anonymous users. Leave empty for anonymous access.-
user
: user name -
password
: password
-
-
custom_commands_file
: path to a file containing custom commands to be sent to the Rx. The file shall contain one command per line. Be very careful using this command, since commands are sent to the Rx without further checks.
OSNMA
-
osnma
: Configuration of the Open Service Navigation Message Authentication (OSNMA) feature.-
mode
: Three operating modes are supported:off
where OSNMA authentication is disabled,loose
where satellites are included in the PVT if they are successfully authenticated or if their authentication status is unknown, andstrict
where only successfully-authenticated satellites are included in the PVT. In case ofstrict
synchronization via NTP is mandatory.- default: off
-
ntp_server
: Instrict
mode, OSNMA authentication requires the availability of external time information. Inloose
mode, this is optional but recommended for enhanced security. The receiver can connect to an NTP time server for this purpose. Options aredefault
to let the receiver choose an NTP server or specify one likepool.ntp.org
for example.- default: ""
-
keep_open
: Wether OSNMA shall be kept active on driver shutdown.- default: true
-
Receiver Configuration
+ configure_rx: Wether to configure the Rx according to the config file. If set to `false`, the Rx has to be configured via the web interface and the settings must be saved. On the driver side communication has to set accordingly to serial, TCP or UDP (TCP and UDP may even be used simultaneously in this case). For TCP communication it is recommended to use a static TCP server (`stream_device.tcp.ip_server` and `stream_device.tcp.port`), since dynamic connections (`device` is tcp) are not guaranteed to have the same id on reconnection. It should also be ensured that obligatory SBF blocks are activated (as of now: ReceiverTime if `use_gnss_time` is set to `true`; `PVTGeodetic`or `PVTCartesian` if latency compensation for PVT related blocks shall be used). Further, if ROS messages compiled from multiple SBF blocks, it should be ensured that all necessary blocks are activated with matching periods, details can be found in section [ROS Topic Publications](#ros-topic-publications). The messages that shall be published still have to be set to `true` in the *NMEA/SBF Messages to be Published* section. Also, parameters concerning the connection and node setup are still relevant (sections: *Connectivity Specs*, *receiver type*, *Frame IDs*, *UTM Zone Locking*, *Time Systems*, *Logger*).
+ default: true
Receiver Type
-
receiver_type
: This parameter is to select the type of the Septentrio receiver-
gnss
for GNSS receivers. -
ins
for INS receivers. - default:
gnss
-
-
multi_antenna
: Whether or not the Rx has multiple antennas.- default:
false
- default:
Frame IDs
-
frame_id
: name of the ROS tf frame for the Rx, placed in the header of published GNSS messages. It corresponds to the frame of the main antenna.- In ROS, the tf package lets you keep track of multiple coordinate frames over time. The frame ID will be resolved by
tf_prefix
if defined. If a ROS message has a header (all of those we publish do), the frame ID can be found viarostopic echo /topic
, where/topic
is the topic into which the message is being published. - default:
gnss
- In ROS, the tf package lets you keep track of multiple coordinate frames over time. The frame ID will be resolved by
-
imu_frame_id
: name of the ROS tf frame for the IMU, placed in the header of published IMU message- default:
imu
- default:
-
poi_frame_id
: name of the ROS tf frame for the POI, placed in the child frame_id of localization ifins_use_poi
is set totrue
.- default:
base_link
- default:
-
vsm_frame_id
: name of the ROS tf frame for the velocity sensor.- default:
vsm
- default:
-
aux1_frame_id
: name of the ROS tf frame for the aux1 antenna.- default:
aux1
- default:
-
vehicle_frame_id
: name of the ROS tf frame for the vehicle. Default is the same aspoi_frame_id
but may be set otherwise.- default:
base_link
- default:
-
local_frame_id
: name of the ROS tf frame for the local frame.- default:
odom
- default:
-
insert_local_frame
: Wether to insert a local frame to published tf according to ROS REP 105. The transform from the local frame specified bylocal_frame_id
to the vehicle frame specified byvehicle_frame_id
has to be provided, e.g. by odometry. Insertion of the local frame means the transform between local frame and global frame is published instead of transform between vehicle frame and global frame.- default:
false
- default:
-
get_spatial_config_from_tf
: wether to get the spatial config via tf with the above mentioned frame ids. This will override spatial settings of the config file. For receiver typeins
withmulti_antenna
set totrue
all frames have to be provided, withmulti_antenna
set tofalse
,aux1_frame_id
is not necessary. For typegnss
with dual-antenna setup onlyframe_id
,aux1_frame_id
, andpoi_frame_id
are needed. For single-antennagnss
no frames are needed. Keep in mind that tf has a tree structure. Thus,poi_frame_id
is the base for all mentioned frames.- default:
false
- default:
-
use_ros_axis_orientation
Wether to use ROS axis orientations according to ROS REP 103 for body related frames and geographic frames. Body frame directions affect INS lever arms and IMU orientation setup parameters. Geographic frame directions affect orientation Euler angles for INS+GNSS and attitude of dual-antenna GNSS. Ifuse_ros_axis_orientation
is set totrue
, the driver converts between the NED convention (Septentrio: yaw = 0 is north, positive clockwise), and ENU convention (ROS: yaw = 0 is east, positive counterclockwise). There is no conversion when setting this parameter tofalse
and the angles will be consistent with the web GUI in this case.- If set to
false
Septentrios definition is used, i.e., front-right-down body related frames and NED (north-east-down) for orientation frames. - If set to
true
ROS definition is used, i.e., front-left-up body related frames and ENU (east-north-up) for orientation frames. - default:
true
- If set to
UTM zone locking
+ lock_utm_zone
: wether the UTM zone of the initial localization is locked, i.e., this zone is kept even if a zone transition would occur.
+ default: true
Datum
-
datum
: With this command, the datum the coordinates should refer to is selected. With setting it toDefault
, the datum depends on the positioning mode, e.g.WGS84
for standalone positioning.- Since the standardized GGA message does only provide the orthometric height (= MSL height = distance from Earth's surface to geoid) and the geoid undulation (distance from geoid to ellipsoid) for which non-WGS84 datums cannot be specified, it does not affect the GGA message.
- default:
Default
POI-ARP Offset
+ `poi_to_arp`: offsets of the main GNSS antenna reference point (ARP) with respect to the point of interest (POI = marker). Use for static receivers only.
+ The parameters `delta_e`, `delta_n` and `delta_u` are the offsets in the East, North and Up (ENU) directions respectively, expressed in meters.
+ All absolute positions reported by the receiver are POI positions, obtained by subtracting this offset from the ARP. The purpose is to take into account the fact that the antenna may not be located directly on the surveying POI.
+ default: `0.0`, `0.0` and `0.0`
Antenna Attitude Offset
+ `att_offset`: Angular offset between two antennas (Main and Aux) and vehicle frame
+ `heading`: The perpendicular (azimuth) axis can be compensated for by adjusting the `heading` parameter
+ `pitch`: Vertical (elevation) offset can be compensated for by adjusting the `pitch` parameter
+ default: `0.0`, `0.0` (degrees)
Antenna Specs
-
ant_type
: type of your main GNSS antenna- For best positional accuracy, it is recommended to select a type from the list returned by the command
lstAntennaInfo, Overview
. This is the list of antennas for which the receiver can compensate for phase center variation. - By default and if
ant_type
does not match any entry in the list returned bylstAntennaInfo, Overview
, the receiver will assume that the phase center variation is zero at all elevations and frequency bands, and the position will not be as accurate. - default:
Unknown
- For best positional accuracy, it is recommended to select a type from the list returned by the command
-
ant_serial_nr
: serial number of your main GNSS antenna -
ant_aux1_type
andant_aux1_serial_nr
: same for Aux1 antenna
Leap Seconds
-
leap_seconds
: Leap seconds are automatically gathered from the receiver via the SBF blockReceiverTime
. If a log file is used for simulation and this block was not recorded, the number of leap seconds that have been inserted up until the point of ROSaic usage can be set by this parameter.- At the time of writing the code (2020), the GPS time, which is unaffected by leap seconds, was ahead of UTC time by 18 leap seconds. Adapt the
leap_seconds
parameter accordingly as soon as the next leap second is inserted into the UTC time or in case you are using ROSaic for the purpose of simulations.
- At the time of writing the code (2020), the GPS time, which is unaffected by leap seconds, was ahead of UTC time by 18 leap seconds. Adapt the
Polling Periods
-
polling_period.pvt
: desired period in milliseconds between the polling of two consecutivePVTGeodetic
,PosCovGeodetic
,PVTCartesian
andPosCovCartesian
blocks and - if published - between the publishing of two of the corresponding ROS messages (e.g.septentrio_gnss_driver/PVTGeodetic.msg
). Consult firmware manual for allowed periods. If the period is set to a lower value than the receiver is capable of, it will be published with the next higher period. If set to0
, the SBF blocks are output at their natural renewal rate (OnChange
).- Clearly, the publishing of composite ROS messages such as
sensor_msgs/NavSatFix.msg
orgps_msgs/GPSFix.msg
is triggered by the SBF block that arrives last among the blocks of the current epoch. - default:
500
(2 Hz)
- Clearly, the publishing of composite ROS messages such as
-
polling_period.rest
: desired period in milliseconds between the polling of all other SBF blocks and NMEA sentences not addressed by the previous parameter, and - if published - between the publishing of all other ROS messages- default:
500
(2 Hz)
- default:
Time Systems
-
use_gnss_time
:true
if the ROS message headers' unix epoch time field shall be constructed from the TOW/WNC (in the SBF case) and UTC (in the NMEA case) data,false
if those times shall be taken by the driver from ROS time. Ifuse_gnss_time
is set totrue
, it is imperative that the ROS system is synchronized to an NTP time server or PTP clock either via internet or ideally via the Septentrio receiver since the latter serves as a Stratum 1 time server not dependent on an internet connection. If this is not followed, the time stamps may drift apart!- default:
false
- default:
-
ntp_server
: Wether the NTP server shall be activated.- default:
false
- default:
-
ptp_server_clock
: Wether the PTP server slcok hall be activated.- default:
false
- default:
-
latency_compensation
: Rx reports processing latency in PVT and INS blocks. If set totrue
this latency is subtracted from ROS timestamps in related blocks (i.e.,use_gnss_time
set tofalse
). Related blocks are INS, PVT, Covariances, and BaseVectors. In case ofuse_gnss_time
set totrue
, the latency is already compensated within the RX and included in the reported timestamps.- default:
false
- default:
RTK corrections
-
rtk_settings
: determines RTK connection parameters- There are multiple possibilities to feed RTK corrections to the Rx. They may be set simultaneously and the Rx will choose the nearest source.
- a)
ntrip_#
if the Rx has internet access and is able to receieve NTRIP streams from a caster. Up to three NTRIP connections are possible. - b)
ip_server_#
if corrections are to be receieved via TCP/IP for example overData Link
from Septentrio's RxTools is installed on a computer. Up to five IP server connections are possible. - c)
serial_#
if corrections are to be receieved via a serial port for example over radio link from a local RTK base or overData Link
from Septentrio's RxTools installed on a computer. Up to five serial connections are possible.
- a)
-
ntrip_#
: for receiving corretions from an NTRIP caster (#
is from 1 ... 3).-
id
: NTRIP connectionNTR1
,NTR2
, orNTR3
. - default: ""
-
caster
: is the hostname or IP address of the NTRIP caster to connect to. - default: ""
-
caster_port
: IP port of the NTRIP caster. - default: 2021
-
username
: user name for the NTRIP caster. - default: ""
-
pasword
: password for the NTRIP caster. The receiver encrypts the password so that it cannot be read back with the command "getNtripSettings". - default: ""
-
mountpoint
: mount point of the NTRP caster to be used. - default: ""
-
version
: argument specifies which version of the NTRIP protocol to use (v1
orv2
). - default: "v2"
-
tls
: determines wether to use TLS. - default: false
-
fingerprint
: fingerprint to be used if the certificate is self-signed. If the caster’s certificate is known by a publicly-trusted certification authority, fingerprint should be left empty. - default: ""
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: "auto"
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver automatically sends GGA messages if requested by the caster. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
-
ip_server_#
: for receiving corretions via TCP/IP (#
is from 1 ... 5).-
id
: specifies the IP serverIPS1
,IPS2
,IPS3
,IPS4
, orIPS5
. Note that ROSaic will send GGA messages on this connection ifsend_gga
is set, such that in theData Link
application ofRxTools
one just needs to set up a TCP client to the host name as found in the ROSaic parameterdevice
with the port as found inport
. If the latter connection were connection 1 onData Link
, then connection 2 would set up an NTRIP client connecting to the NTRIP caster as specified in the above parameters in order to forward the corrections from connection 2 to connection 1. - default: ""
-
port
: its port number of the connection that ROSaic establishes on the receiver. When selecting a port number, make sure to avoid conflicts with other services. - default: 0
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: ""
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver sends withsec1
. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
-
serial_#
: for receiving corretions via serial connection (#
is from 1 ... 5).-
port
: Serial connectionCOM1
,COM2
,COM3
,USB1
, orUSB2
on which corrections could be forwarded to the Rx from a serially connected radio link modem or viaData Link
for example. - default: ""
-
baud_rate
: sets the baud rate of this port for genuine serial ports, i.e., not relevant for USB connection. - default: 115200
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: "auto"
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver sends withsec1
. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
- There are multiple possibilities to feed RTK corrections to the Rx. They may be set simultaneously and the Rx will choose the nearest source.
INS Specs
+ `ins_spatial_config`: Spatial configuration of INS/IMU. Coordinates according to vehicle related frame directions chosen by `use_ros_axis_orientation` (front-left-up if `true` and front-right-down if `false`).
+ `imu_orientation`: IMU sensor orientation
+ Parameters `theta_x`, `theta_y` and `theta_z` are used to determine the sensor orientation with respect to the vehicle frame. Positive angles correspond to a right-handed (clockwise) rotation of the IMU with respect to its nominal orientation (see below). The order of the rotations is as follows: `theta_z` first, then `theta_y`, then `theta_x`.
+ The nominal orientation is where the IMU is upside down and with the `X axis` marked on the receiver pointing to the front of the vehicle. By contrast, for `use_ros_axis_orientation: true`, nominal orientation is where the `Z axis` of the IMU is pointing upwards and also with the `X axis` marked on the receiver pointing to the front of the vehicle.
+ default: `0.0`, `0.0`, `0.0` (degrees)
+ `poi_lever_arm`: The lever arm from the IMU reference point to a user-defined POI
+ Parameters `delta_x`,`delta_y` and `delta_z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `ant_lever_arm`: The lever arm from the IMU reference point to the main GNSS antenna
+ The parameters `x`,`y` and `z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `vsm_lever_arm`: The lever arm from the IMU reference point to the velocity sensor
+ The parameters `vsm_x`,`vsm_y` and `vsm_z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `ins_initial_heading`: How the receiver obtains the initial INS/GNSS integrated heading during the alignment phase
+ In case it is `auto`, the initial integrated heading is determined from GNSS measurements.
+ In case it is `stored`, the last known heading when the vehicle stopped before switching off the receiver is used as initial heading. Use if vehicle does not move when the receiver is switched off.
+ default: `auto`
+ `ins_std_dev_mask`: Maximum accepted error
+ `att_std_dev`: Configures an output limit on standard deviation of the attitude angles (max error accepted: 5 degrees)
+ `pos_std_dev`: Configures an output limit on standard deviation of the position (max error accepted: 100 meters)
+ default: `5` degrees, `10` meters
+ `ins_use_poi`: Whether or not to use the POI defined in `ins_spatial_config.poi_lever_arm`
+ If true, the point at which the INS navigation solution (e.g. in `insnavgeod` ROS topic) is calculated will be the POI as defined above (`poi_frame_id`), otherwise it'll be the main GNSS antenna (`frame_id`). Has to be set to `true` if tf shall be published.
+ default: `true`
+ `ins_vsm`: Configuration of the velocity sensor measurements. IP server may be used to receive velocity information from ROS or from an external device. Serial connection may be used to receive velocity information from an external device only.
+ `ros`: VSM info received from ROS msgs
+ `source`: Specifies which ROS message type shall be used, options are `odometry` or `twist`. Accordingly, a subscriber is established of the type [`nav_msgs/Odometry.msg`](https://docs.ros2.org/foxy/api/nav_msgs/msg/Odometry.html) or [`geometry_msgs/TwistWithCovarianceStamped.msg`](https://docs.ros2.org/foxy/api/geometry_msgs/msg/TwistWithCovarianceStamped.html) listening on the topics `odometry_vsm` or `twist_vsm` respectively. Only linear velocities are evaluated. Measurements have to be with respect to the frame aligned with the vehicle and defined by `ins_spatial_config.vsm_lever_arm` or tf-frame `vsm_frame_id`, see also comment in [`nav_msgs/Odometry.msg`](https://docs.ros2.org/foxy/api/nav_msgs/msg/Odometry.html) that twist should be specified in `child_frame_id`.
+ default: ""
+ `config`: Defines which measurements belonging to the respective axes are forwarded to the INS. In addition, non-holonomic constraints may be introduced for directions known to be restricted in movement. For example, a vehicle with Ackermann steering is limited in its sidewards and upwards movement. So, even if only motion in x-direction may be measured, zero-velocities for y and z may be sent. Only has to be set if `ins_vsm.ros.source`is set to `odometry` or `twist`.
+ default: []
+ `variances_by_parameter`: Wether variances shall be entered by parameter `ins_vsm.ros.variances` or the values from inside the ROS messages are used. Only has to be set if `ins_vsm.source`is set to `odometry` or `twist`.
+ default: false
+ `variances`: Variances of the respective axes. Only have to be set if `ins_vsm.variances_by_parameter` is set to `true`. Values must be > 0.0, else measurements cannot not be used.
+ default: []
+ `ip_server`:
+ `id`: IP server to receive the VSM info (e.g. `IPS1`). If a TCP stream device (`device.stream_device.tcp`) is set up, this device may be used here, i.e, `id` my be set to the same.
+ default: "IPS5"
+ `port`: TCP port to receive the VSM info. When selecting a port number, make sure to avoid conflicts with other services.
+ default: 24786
+ `keep_open` determines wether this connections to receive VSM shall be kept open on driver shutdown. If set to `true` the Rx will still be able to use external VSM info to improve its localization.
+ default: `true`
+ `serial`:
+ `port`: Serial port to receive the VSM info.
+ default: ""
+ `baud_rate`: Baud rate of the serial port to receive the VSM info.
+ default: 115200
+ `keep_open` determines wether this connections to receive VSM shall be kept open on driver shutdown. If set to `true` the Rx will still be able to use external VSM info to improve its localization.
+ default: `true`
Logger
+ `activate_debug_log`: `true` if ROS logger level shall be set to debug.
-
Parameters Configuring (Non-)Publishing of ROS Messages
NMEA/SBF Messages to be Published
-
publish.auto_publish
:true
to automatically publish messages for which SBF blocks and NMEA sentences are available. Only applicable ifconigure_rx
isfalse
. Iftf_ecef
shall be published, this must be explicitily set to true, else tf in UTM is published if available. -
publish.publish_only_valid
:true
to publish SBF blocks only if timestamp (TOW) is valid. -
publish.gpgga
:true
to publishnmea_msgs/GPGGA.msg
messages into the topic/gpgga
-
publish.gprmc
:true
to publishnmea_msgs/GPRMC.msg
messages into the topic/gprmc
-
publish.gpgsa
:true
to publishnmea_msgs/GPGSA.msg
messages into the topic/gpgsa
-
publish.gpgsv
:true
to publishnmea_msgs/GPGSV.msg
messages into the topic/gpgsv
-
publish.measepoch
:true
to publishseptentrio_gnss_driver/MeasEpoch.msg
messages into the topic/measepoch
-
publish.galauthstatus
:true
to publishseptentrio_gnss_driver/GALAuthStatus.msg
messages into the topic/galauthstatus
and corresponding/diganostics
-
publish.aimplusstatus
:true
to publishseptentrio_gnss_driver/RFStatus.msg
messages into the topic/rfstatus
,septentrio_gnss_driver/AIMPlusStatus.msg
messages into/aimplusstatus
and corresponding/diganostics
. Some information is only available with active OSNMA. -
publish.pvtcartesian
:true
to publishseptentrio_gnss_driver/PVTCartesian.msg
messages into the topic/pvtcartesian
-
publish.pvtgeodetic
:true
to publishseptentrio_gnss_driver/PVTGeodetic.msg
messages into the topic/pvtgeodetic
-
publish.basevectorcart
:true
to publishseptentrio_gnss_driver/BaseVectorCart.msg
messages into the topic/basevectorcart
-
publish.basevectorgeod
:true
to publishseptentrio_gnss_driver/BaseVectorGeod.msg
messages into the topic/basevectorgeod
-
publish.poscovcartesian
:true
to publishseptentrio_gnss_driver/PosCovCartesian.msg
messages into the topic/poscovcartesian
-
publish.poscovgeodetic
:true
to publishseptentrio_gnss_driver/PosCovGeodetic.msg
messages into the topic/poscovgeodetic
-
publish.velcovcartesian
:true
to publishseptentrio_gnss_driver/VelCovCartesian.msg
messages into the topic/velcovcartesian
-
publish.velcovgeodetic
:true
to publishseptentrio_gnss_driver/VelCovGeodetic.msg
messages into the topic/velcovgeodetic
-
publish.atteuler
:true
to publishseptentrio_gnss_driver/AttEuler.msg
messages into the topic/atteuler
-
publish.attcoveuler
:true
to publishseptentrio_gnss_driver/AttCovEuler.msg
messages into the topic/attcoveuler
-
publish.gpst
:true
to publishsensor_msgs/TimeReference.msg
messages into the topic/gpst
-
publish.navsatfix
:true
to publishsensor_msgs/NavSatFix.msg
messages into the topic/navsatfix
-
publish.gpsfix
:true
to publishgps_msgs/GPSFix.msg
messages into the topic/gpsfix
-
publish.pose
:true
to publishgeometry_msgs/PoseWithCovarianceStamped.msg
messages into the topic/pose
-
publish.twist
:true
to publishgeometry_msgs/TwistWithCovarianceStamped.msg
messages into the topics/twist
and/twist_ins
respectively -
publish.diagnostics
:true
to publishdiagnostic_msgs/DiagnosticArray.msg
messages into the topic/diagnostics
-
publish.insnavcart
:true
to publishseptentrio_gnss_driver/INSNavCart.msg
message into the topic/insnavcart
-
publish.insnavgeod
:true
to publishseptentrio_gnss_driver/INSNavGeod.msg
message into the topic/insnavgeod
-
publish.extsensormeas
:true
to publishseptentrio_gnss_driver/ExtSensorMeas.msg
message into the topic/extsensormeas
-
publish.imusetup
:true
to publishseptentrio_gnss_driver/IMUSetup.msg
message into the topic/imusetup
-
publish.velsensorsetup
:true
to publishseptentrio_gnss_driver/VelSensorSetup.msgs
message into the topic/velsensorsetup
-
publish.exteventinsnavcart
:true
to publishseptentrio_gnss_driver/ExtEventINSNavCart.msgs
message into the topic/exteventinsnavcart
-
publish.exteventinsnavgeod
:true
to publishseptentrio_gnss_driver/ExtEventINSNavGeod.msgs
message into the topic/exteventinsnavgeod
-
publish.imu
:true
to publishsensor_msgs/Imu.msg
message into the topic/imu
-
publish.localization
:true
to publishnav_msgs/Odometry.msg
message into the topic/localization
-
publish.tf
:true
to broadcast tf of localization.ins_use_poi
must also be set to true to publish tf. Note that only one ofpublish.tf
orpublish.tf_ecef
may betrue
.
-
publish.localization_ecef
:true
to publishnav_msgs/Odometry.msg
message into the topic/localization
related to ECEF frame. -
publish.tf_ecef
:true
to broadcast tf of localization related to ECEF frame.ins_use_poi
must also be set to true to publish tf. Note that only one ofpublish.tf
orpublish.tf_ecef
may betrue
.
-
ROS Topic Publications
A selection of NMEA sentences, the majority being standardized sentences, and proprietary SBF blocks is translated into ROS messages, partly generic and partly custom, and can be published at the discretion of the user into the following ROS topics. All published ROS messages, even custom ones, start with a ROS generic header std_msgs/Header.msg
, which includes the receiver time stamp as well as the frame ID, the latter being specified in the ROS parameter frame_id
.
Available ROS Topics
-
/gpgga
: publishesnmea_msgs/Gpgga.msg
- converted from the NMEA sentence GGA. -
/gprmc
: publishesnmea_msgs/Gprmc.msg
- converted from the NMEA sentence RMC. -
/gpgsa
: publishesnmea_msgs/Gpgsa.msg
- converted from the NMEA sentence GSA. -
/gpgsv
: publishesnmea_msgs/Gpgsv.msg
- converted from the NMEA sentence GSV. -
/measepoch
: publishes custom ROS messageseptentrio_gnss_driver/MeasEpoch.msg
, corresponding to the SBF blockMeasEpoch
.
-
/galauthstatus
: publishes custom ROS messageseptentrio_gnss_driver/GALAuthStatus.msg
, corresponding to the SBF blockGALAuthStatus
. -
/rfstatus
: publishes custom ROS messageseptentrio_gnss_driver/RFStatus.msg
, compiled from the SBF blockRFStatus
. -
/aimplusstatus
: publishes custom ROS messageseptentrio_gnss_driver/AIMPlusStatus.msg
, reporting status of AIM+. Converted from SBF blocksRFStatus
and optionallyGALAuthStatus
. For the latter OSNMA has to be activated. -
/pvtcartesian
: publishes custom ROS messageseptentrio_gnss_driver/PVTCartesian.msg
, corresponding to the SBF blockPVTCartesian
(GNSS case) orINSNavGeod
(INS case). -
/pvtgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/PVTGeodetic.msg
, corresponding to the SBF blockPVTGeodetic
(GNSS case) orINSNavGeod
(INS case). -
/basevectorcart
: publishes custom ROS messageseptentrio_gnss_driver/BaseVectorCart.msg
, corresponding to the SBF blockBaseVectorCart
. -
/basevectorgeod
: publishes custom ROS messageseptentrio_gnss_driver/BaseVectorGeod.msg
, corresponding to the SBF blockBaseVectorGeod
. -
/poscovcartesian
: publishes custom ROS messageseptentrio_gnss_driver/PosCovCartesian.msg
, corresponding to SBF blockPosCovCartesian
(GNSS case) orINSNavGeod
(INS case). -
/poscovgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/PosCovGeodetic.msg
, corresponding to SBF blockPosCovGeodetic
(GNSS case) orINSNavGeod
(INS case). -
/velcovcartesian
: publishes custom ROS messageseptentrio_gnss_driver/VelCovCartesian.msg
, corresponding to SBF blockVelCovCartesian
(GNSS case). -
/velcovgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/VelCovGeodetic.msg
, corresponding to SBF blockVelCovGeodetic
(GNSS case). -
/atteuler
: publishes custom ROS messageseptentrio_gnss_driver/AttEuler.msg
, corresponding to SBF blockAttEuler
. -
/attcoveuler
: publishes custom ROS messageseptentrio_gnss_driver/AttCovEuler.msg
, corresponding to the SBF blockAttCovEuler
. -
/gpst
(for GPS Time): publishes generic ROS messagesensor_msgs/TimeReference.msg
, converted from thePVTGeodetic
(GNSS case) orINSNavGeod
(INS case) block's GPS time information, stored in its block header. -
/navsatfix
: publishes generic ROS messagesensor_msgs/NavSatFix.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
(GNSS case) orINSNavGeod
(INS case)- The ROS message
sensor_msgs/NavSatFix.msg
can be fed directly into thenavsat_transform_node
of the ROS navigation stack.
- The ROS message
-
/gpsfix
: publishes generic ROS messagegps_msgs/GPSFix.msg
, which is much more detailed thansensor_msgs/NavSatFix.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
,ChannelStatus
,MeasEpoch
,AttEuler
,AttCovEuler
,VelCovGeodetic
,DOP
(GNSS case) orINSNavGeod
,ChannelStatus
,MeasEpoch
,DOP
(INS case). In order to publish heading information, the field dip is diverted from its intended meaning an populated with the heading angle and err_dip with its uncertainty.- INS case: Beware, in order to allow a high update rate,
ChannelStatus
,MeasEpoch
, andDOP
are not time aligned, i.e., they might contain outdated information.
- INS case: Beware, in order to allow a high update rate,
-
/pose
: publishes generic ROS messagegeometry_msgs/PoseWithCovarianceStamped.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
,AttEuler
,AttCovEuler
(GNSS case) orINSNavGeod
(INS case).- Note that GNSS provides absolute positioning, while robots are often localized within a local level cartesian frame. The pose field of this ROS message contains position with respect to the absolute ENU frame (longitude, latitude, height), i.e. not a cartesian frame, while the orientation is with respect to a vehicle-fixed (e.g. for mosaic-x5 in moving base mode via the command
setAttitudeOffset
, ...) !local! NED frame or ENU frame ifuse_ros_axis_directions
is settrue
. Thus the orientation is !not! given with respect to the same frame as the position is given in. The cross-covariances are hence set to 0.
- Note that GNSS provides absolute positioning, while robots are often localized within a local level cartesian frame. The pose field of this ROS message contains position with respect to the absolute ENU frame (longitude, latitude, height), i.e. not a cartesian frame, while the orientation is with respect to a vehicle-fixed (e.g. for mosaic-x5 in moving base mode via the command
-
/twist
: publishes generic ROS messagegeometry_msgs/TwistWithCovarianceStamped.msg
, converted from the SBF blocksPVTGeodetic
andVelCovGeodetic
. -
/twist_ins
: publishes generic ROS messagegeometry_msgs/TwistWithCovarianceStamped.msg
, converted from SBF blockINSNavGeod
. -
/insnavcart
: publishes custom ROS messageseptentrio_gnss_driver/INSNavCart.msg
, corresponding to SBF blockINSNavCart
-
/insnavgeod
: publishes custom ROS messageseptentrio_gnss_driver/INSNavGeod.msg
, corresponding to SBF blockINSNavGeod
-
/extsensormeas
: publishes custom ROS messageseptentrio_gnss_driver/ExtSensorMeas.msg
, corresponding to SBF blockExtSensorMeas
. -
/imusetup
: publishes custom ROS messageseptentrio_gnss_driver/IMUSetup.msg
, corresponding to SBF blockIMUSetup
. -
/velsensorsetup
: publishes custom ROS messageseptentrio_gnss_driver/VelSensorSetup.msg
corresponding to SBF blockVelSensorSetup
. -
/exteventinsnavcart
: publishes custom ROS messageseptentrio_gnss_driver/INSNavCart.msg
, corresponding to SBF blockExtEventINSNavCart
. -
/exteventinsnavgeod
: publishes custom ROS messageseptentrio_gnss_driver/INSNavGeod.msg
, corresponding to SBF blockExtEventINSNavGeod
. -
/diagnostics
: accepts generic ROS messagediagnostic_msgs/DiagnosticArray.msg
, converted from the SBF blocksQualityInd
,ReceiverStatus
andReceiverSetup
-
/imu
: accepts generic ROS messagesensor_msgs/Imu.msg
, converted from the SBF blocksExtSensorMeas
andINSNavGeod
.- The ROS message
sensor_msgs/Imu.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
-
/localization
: accepts generic ROS messagenav_msgs/Odometry.msg
, converted from the SBF blockINSNavGeod
and transformed to UTM.- The ROS message
nav_msgs/Odometry.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
-
/localization_ecef
: accepts generic ROS messagenav_msgs/Odometry.msg
, converted from the SBF blocksINSNavCart
andINSNavGeod
.- The ROS message
nav_msgs/Odometry.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
Suggestions for Improvements
Some Ideas
+ Equip ROSaic with an NTRIP client such that it can forward corrections to the receiver independently of `Data Link`.Adding New SBF Blocks or NMEA Sentences
Steps to Follow
Is there an SBF or NMEA message that is not being addressed while being important to your application? If yes, follow these steps: 1. Find the log reference of interest in the publicly accessible, official documentation. Hence select the reference guide file, e.g. for mosaic-x5 in the [product support section for mosaic-X5](https://www.septentrio.com/en/support/mosaic/mosaic-x5), Chapter 4, of Septentrio's homepage. 2. SBF: Add a new `.msg` file to the `../msg` folder. And modify the `../CMakeLists.txt` file by adding a new entry to the `add_message_files` section. 3. Add msg header and typedef to `typedefs.hpp`. 4. Parsers: - SBF: Add a parser to the `sbf_blocks.hpp` file. - NMEA: Construct two new parsing files such as `gpgga.cpp` to the `../src/septentrio_gnss_driver/parsers/nmea_parsers` folder and one such as `gpgga.hpp` to the `../include/septentrio_gnss_driver/parsers/nmea_parsers` folder. 5. Processing the message/block: - SBF: Extend the `SbfId` enumeration in the `message_handler.hpp` file with a new entry. - SBF: Extend the SBF switch-case in `message_handler.cpp` file with a new case. - NMEA: Extend the `nmeaMap_` in the `message_handler.hpp` file with a new pair. - NMEA: Extend the NMEA switch-case in `message_handler.cpp` file with a new case. 6. Create a new `publish/..` ROSaic parameter in the `../config/rover.yaml` file and create a boolean variable `publish_xxx` in the struct in the `settings.h` file. Parse the parameter in the `rosaic_node.cpp` file. 7. Add SBF block or NMEA to data stream setup in `communication_core.cpp` (function `configureRx()`).CONTRIBUTING
Repository Summary
Checkout URI | https://github.com/septentrio-gnss/septentrio_gnss_driver.git |
VCS Type | git |
VCS Version | master |
Last Updated | 2024-08-04 |
Dev Status | MAINTAINED |
CI status | No Continuous Integration |
Released | RELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Packages
Name | Version |
---|---|
septentrio_gnss_driver | 1.4.1 |
README
ROSaic = ROS + mosaic
Overview
This repository hosts drivers for ROS 1 (Melodic and Noetic) and ROS 2 (Foxy, Galactic, Humble, Iron, Rolling, and beyond) - written in C++ - that work with mosaic and AsteRx - two of Septentrio's cutting-edge GNSS and GNSS/INS receiver families - and beyond. Both ROS 1 and ROS 2 are supported within one repository.
Main Features:
- Supports Septentrio's single antenna GNSS, dual antenna GNSS and INS receivers
- Supports serial, TCP/IP and USB connections, the latter being compatible with both serial (RNDIS) and TCP/IP protocols
- Supports several ASCII (including key NMEA ones) messages and SBF (Septentrio Binary Format) blocks
- Reports status of AIM+ (Advanced Interference Mitigation including OSNMA) anti-jamming and anti-spoofing.
- Can publish nav_msgs/Odometry
message for INS receivers
- Can blend SBF blocks PVTGeodetic
, PosCovGeodetic
, ChannelStatus
, MeasEpoch
, AttEuler
, AttCovEuler
, VelCovGeodetic
and DOP
in order to publish gps_common/GPSFix
and sensor_msgs/NavSatFix
messages
- Supports optional axis convention conversion since Septentrio follows the NED convention, whereas ROS is ENU.
- Easy configuration of multiple RTK corrections simultaneously (via NTRIP, TCP/IP stream, or serial)
- Can play back PCAP capture logs for testing purposes
- Tested with the mosaic-X5, mosaic-H, AsteRx-m3 Pro+, AsteRx-SB Pro+ and the AsteRx-SBi3 Pro receiver
- Easy to add support for more log types
Please let the maintainers know of your success or failure in using the driver with other devices so we can update this page appropriately.
Usage
Important notes
Notes Before Usage
+ The driver assumes that our anonymous access to the Rx grants us full control rights. This should be the case by default, and can otherwise be changed with the `setDefaultAccessLevel` command. If user control is in place user credentials can be given by parameters `login.user` and `login.password`. + Note for serial connection: Make sure the user is part of the `dialout` group to have full access to the serial ports. If not, add it for example with `sudo adduser [username] dialout`. + Note for setting hw_flow_control: This is a string parameter, setting it to off without quotes leads to the fact that it is not read in correctly. + Note for setting ant_(aux1)_serial_nr: This is a string parameter, numeric only serial numbers should be put in quotes. If this is not done a warning will be issued and the driver tries to parse it as integer. + Note for usage of NTRIP via USB with virtual ethernet (RNDIS): RNDIS provides a virtual network connection only between the receiver and the PC. First outgoing network access via USB has to be activated, which is explained [here](https://www.youtube.com/watch?v=bUt8cL9Ue1Y). Next setup internet sharing under Linux by setting the connection of the virtual network interface (the name should be something like enx1a3202991545) to "Shared to other computers". + Once the build or binary installation is finished, adapt the `config/rover.yaml` file according to your needs or assemble a new one, examples for GNSS specific parameters `config/gnss.yaml` and INS `config/ins.yaml` are also available. Specify the communication parameters, the ROS messages to be published, the frequency at which the latter should happen etc.ROS 1: Launch the `launch/rover.launch` to use `rover.yaml` or add `param_file_name:=xxx` to use a custom config.
ROS 2: Launch as composition with `ros2 launch septentrio_gnss_driver rover.launch.py` to use `rover.yaml` or add `file_name:=xxx.yaml` to use a custom config. Alternatively launch as node with `ros2 launch septentrio_gnss_driver rover_node.launch.py` to use `rover_node.yaml` or add `file_name:=xxx.yaml` to use a custom config. Specify the communication parameters, the ROS messages to be published, the frequency at which the latter should happen etc. + Besides the aforementioned config file `rover.yaml` containing all parameters, specialized launch files for GNSS `config/gnss.yaml` and INS `config/ins.yaml` respectively contain only the relevant parameters in each case. - NOTE: Unless `configure_rx` is set to `false`, this driver will overwrite the previous values of the parameters, even if the value is left to zero in the "yaml" file. + The driver was developed and tested with firmware versions >= 4.10.0 for GNSS and >= 1.3.2 for INS. Receivers with older firmware versions are supported but some features may not be available. Known limitations are: * GNSS with firmware < 4.10.0 does not support IP over USB. * GNSS with firmware < 4.12.1 does not support OSNMA. * GNSS with firmware < 4.14 does not support PTP server clock. * INS with firmware <= 1.2.0 does not support velocity aiding. * INS with firmware <= 1.2.0 does not support setting of initial heading. * INS with firmware < 1.3.2 does not support NTP. * INS with firmware < 1.4 does not support OSNMA. * INS with firmware < 1.4.1 does not support improved VSM handling allowing for unknown variances. * INS does not support PTP server clock as of now. + Known issues: * UDP over USB: Blocks are sent twice on GNSS with firmware <= 4.12.1 and INS with firmware <= 1.4. For GNSS it is fixed in version 4.14 (released on June 15th 2023), for INS is fixed in 1.4.1 (released November 2023). + If `use_ros_axis_orientation` to `true` axis orientations are converted by the driver between NED (Septentrio: yaw = 0 is north, positive clockwise) and ENU (ROS: yaw = 0 is east, positive counterclockwise). There is no conversion when setting this parameter to `false` and the angles will be consistent with the web GUI in this case. :
``` # Example configuration Settings for the Rover Rx device: tcp://192.168.3.1:28784 serial: baudrate: 921600 hw_flow_control: "off" stream_device: tcp: ip_server: "" port: 0 udp: ip_server: "" port: 0 unicast_ip: "" configure_rx: true custom_commands_file: "" login: user: "" password: "" osnma: mode: "off" ntp_server: "" keep_open: true frame_id: gnss imu_frame_id: imu poi_frame_id: base_link vsm_frame_id: vsm aux1_frame_id: aux1 vehicle_frame_id: base_link insert_local_frame: false local_frame_id: odom get_spatial_config_from_tf: true lock_utm_zone: true use_ros_axis_orientation: true receiver_type: gnss datum: Default poi_to_arp: delta_e: 0.0 delta_n: 0.0 delta_u: 0.0 att_offset: heading: 0.0 pitch: 0.0 ant_type: Unknown ant_aux1_type: Unknown ant_serial_nr: Unknown ant_aux1_serial_nr: Unknown leap_seconds: 18 polling_period: pvt: 500 rest: 500 use_gnss_time: false ntp_server: false ptp_server_clock: false latency_compensation: false rtk_settings: ntrip_1: id: "NTR1" caster: "1.2.3.4" caster_port: 2101 username: "Asterix" password: "password" mountpoint: "mtpt1" version: "v2" tls: true fingerprint: "AA:BB:56:78:90:12: ... 78:90:12:34" rtk_standard: "RTCMv3" send_gga: "auto" keep_open: true ntrip_2: id: "NTR3" caster: "5.6.7.8" caster_port: 2101 username: "Obelix" password: "password" mountpoint: "mtpt2" version: "v2" tls: false fingerprint: "" rtk_standard: "RTCMv2" send_gga: "auto" keep_open: true ip_server_1: id: "IPS3" port: 28785 rtk_standard: "RTCMv2" send_gga: "auto" keep_open: true ip_server_2: id: "IPS5" port: 28786 rtk_standard: "CMRv2" send_gga: "auto" keep_open: true serial_1: port: "COM1" baud_rate: 230400 rtk_standard: "auto" send_gga: "sec1" keep_open: true serial_2: port: "COM2" baud_rate: 230400 rtk_standard: "auto" send_gga: "off" keep_open: true publish: # For both GNSS and INS Rxs auto_publish: false publish_only_valid: false navsatfix: false gpsfix: true gpgga: false gprmc: false gpst: false measepoch: false pvtcartesian: false pvtgeodetic: true basevectorcart: false basevectorgeod: false poscovcartesian: false poscovgeodetic: true velcovcartesian: false velcovgeodetic: false atteuler: true attcoveuler: true pose: false twist: false diagnostics: false aimplusstatus: true galauthstatus: false # For GNSS Rx only gpgsa: false gpgsv: false # For INS Rx only insnavcart: false insnavgeod: false extsensormeas: false imusetup: false velsensorsetup: false exteventinsnavcart: false exteventinsnavgeod: false imu: false localization: false tf: false localization_ecef: false tf_ecef: false # INS-Specific Parameters ins_spatial_config: imu_orientation: theta_x: 0.0 theta_y: 0.0 theta_z: 0.0 poi_lever_arm: delta_x: 0.0 delta_y: 0.0 delta_z: 0.0 ant_lever_arm: x: 0.0 y: 0.0 z: 0.0 vsm_lever_arm: vsm_x: 0.0 vsm_y: 0.0 vsm_z: 0.0 ins_initial_heading: auto ins_std_dev_mask: att_std_dev: 5.0 pos_std_dev: 10.0 ins_use_poi: true ins_vsm: source: "twist" config: [true, false, false] variances_by_parameter: true variances: [0.1, 0.0, 0.0] ip_server: id: "IPS2" port: 28787 keep_open: true serial: port: "COM3" baud_rate: 115200 keep_open: true # Logger activate_debug_log: false ``` In order to launch ROSaic, the launch command for ROS 1 reads `roslaunch septentrio_gnss_driver rover.launch param_file_name:=rover` and for ROS 2 reads `ros2 launch septentrio_gnss_driver rover.py file_name:=rover.yaml`. If multiple port are utilized for RTK corrections and/or VSM, which shall be closed after driver shutdown (`keep_open: false`), make sure to give the driver enough time to gracefully shutdown as closing the ports takes a few seconds. For ROS 2, this can be accomplished in the launch files by increasing the timeout of SIGTERM (e.g. `sigterm_timeout = '10',`), see example launch files`rover.launch.py`and `rover_node.launch.py` respectively.
Dependencies
ROS
This driver functions on ROS 1 [Melodic](https://wiki.ros.org/melodic/Installation/Ubuntu) and [Noetic](https://wiki.ros.org/noetic/Installation/Ubuntu) or ROS 2 [Foxy](https://docs.ros.org/en/foxy/Installation.html), [Galactic](https://docs.ros.org/en/galactic/Installation.html), [Humble](https://docs.ros.org/en/humble/Installation.html) [Iron](https://docs.ros.org/en/iron/Installation.html), [Jazzy](https://docs.ros.org/en/jazzy/Installation.html), and [Rolling](https://docs.ros.org/en/rolling/Installation.html) (Ubuntu 18.04, 20.04, 22.04, or 24.04 respectively). It is thus necessary to install the ROS version that has been designed for your Linux distro.Binary Install
The binary release is available for ROS 1 (Melodic and Noetic) and ROS 2 (Foxy, Galactic, Humble, Iron, Jazzy, and Rolling). Since Melodic, Foxy, and Galactic are EOL, only Noetic, Humble, Iron, Jazzy, and Rolling will get updated versions. To install the binary package, simply run `sudo apt-get install ros-$ROS_DISTRO-septentrio-gnss-driver`.Build from source
Build
+ Building ROSaic only works from C++17 onwards due to the usage of std::any() etc. #### Dependencies for development Additional ROS packages have to be installed for the NMEA and GPSFix messages.ROS 1: `sudo apt install ros-$ROS_DISTRO-nmea-msgs ros-$ROS_DISTRO-gps-common`.
ROS 2: `sudo apt install ros-$ROS_DISTRO-nmea-msgs ros-$ROS_DISTRO-gps-msgs`.
The serial and TCP/IP communication interface of the ROS driver is established by means of the [Boost C++ library](https://www.boost.org/). In the unlikely event that the below installation instructions fail to install Boost on the fly, please install the Boost libraries via
`sudo apt install libboost-all-dev`.
Conversions from LLA to UTM are incorporated through [GeographicLib](https://geographiclib.sourceforge.io/). Install the necessary headers via
`sudo apt install libgeographic-dev`
or
`sudo apt install libgeographiclib-dev`
since Ubunutu 24.04. respectively.
Compatiblity with PCAP captures are incorporated through [pcap libraries](https://github.com/the-tcpdump-group/libpcap). Install the necessary headers via
`sudo apt install libpcap-dev`.
#### ROS 1 For ROS 1, the package can be built from source using [`catkin_tools`](https://catkin-tools.readthedocs.io/en/latest/installing.html), where the latter can be installed using the command `sudo apt-get install python-catkin-tools` for Melodic or `sudo apt-get install python3-catkin-tools` for Noetic. The typical `catkin_tools` [workflow](https://catkin-tools.readthedocs.io/en/latest/quick_start.html) should suffice: ``` source /opt/ros/${ROS_DISTRO}/setup.bash # In case you do not use the default shell of Ubuntu, you need to source another script, e.g. setup.sh. mkdir -p ~/septentrio/src # Note: Change accordingly depending on where you want your package to be installed. cd ~/septentrio catkin init # Initialize with a hidden marker file catkin config --cmake-args -DCMAKE_BUILD_TYPE=RelWithDebInfo # CMake build types pass compiler-specific flags to your compiler. This type amounts to a release with debug info, while keeping debugging symbols and doing optimization. I.e. for GCC the flags would be -O2, -g and -DNDEBUG. cd src git clone https://github.com/septentrio-gnss/septentrio_gnss_driver rosdep install . --from-paths -i # Might raise "rosaic: Unsupported OS [mint]" warning, if your OS is Linux Mint, since rosdep does not know Mint (and possible other OSes). In that case, add the "--os=ubuntu:saucy" option to "fool" rosdep into believing it faces some Ubuntu version. The syntax is "--os=OS_NAME:OS_VERSION". catkin build # If catkin cannot find empty, tell catkin to use Python 3 by adding "-DPYTHON_EXECUTABLE=/usr/bin/python3". echo "source ~/septentrio/devel/setup.bash" >> ~/.bashrc # It is convenient if the ROS environment variable is automatically added to your bash session every time a new shell is launched. Again, this works for bash shells only. Also note that if you have more than one ROS distribution installed, ~/.bashrc must only source the setup.bash for the version you are currently using. source ~/.bashrc ``` #### ROS 2 For ROS 2, The package has to be built from source using [`colcon`](https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Colcon-Tutorial.html): ``` source /opt/ros/${ROS_DISTRO}/setup.bash # In case you do not use the default shell of Ubuntu, you need to source another script, e.g. setup.sh. mkdir -p ~/septentrio/src # Note: Change accordingly depending on where you want your package to be installed. cd ~/septentrio/src git clone https://github.com/septentrio-gnss/septentrio_gnss_driver git checkout ros2 # Install mentioned dependencies (`sudo apt install ros-$ROS_DISTRO-nmea_msgs ros-$ROS_DISTRO-gps-msgs libboost-all-dev libpcap-dev libgeographic-dev`) colcon build --packages-up-to septentrio_gnss_driver # Be sure to call colcon build in the root folder of your workspace. Launch files are installed, so changing them on the fly in the source folder only works with installing by symlinks: add `--symlink-install` echo "source ~/septentrio/devel/setup.bash" >> ~/.bashrc # It is convenient if the ROS environment variable is automatically added to your bash session every time a new shell is launched. Again, this works for bash shells only. Also note that if you have more than one ROS distribution installed, ~/.bashrc must only source the setup.bash for the version you are currently using. source ~/.bashrc ``` Run tests ``` colcon test --packages-select septentrio_gnss_driver --event-handlers console_direct+ ```
Inertial Navigation System (INS): Basics
- An Inertial Navigation System (INS) is a device which takes the rotation and acceleration solutions as obtained from its Inertial Measurement Unit (IMU) and combines those with position and velocity information from the GNSS module. Compared to a GNSS system with 7D or 8D (dual-antenna systems) phase space solutions, the combined, Kalman-filtered 9D phase space solution (3 for position, 3 for velocity, 3 for orientation) of an INS is more accurate, more precise and more stable against GNSS outages.
-
The IMU is typically made up of a 3-axis accelerometer, a 3-axis gyroscope and sometimes a 3-axis magnetometer and measures the system's angular rate and acceleration.
Measure and Compensate for IMU-Antenna Lever Arm
- The IMU-antenna lever-arm is the relative position between the IMU reference point and the GNSS Antenna Reference Point (ARP), measured in the vehicle frame.
- In case of AsteRx SBi3, the IMU reference point is clearly marked on the top panel of the receiver. It is important to compensate for the effect of the lever arm, otherwise the receiver may not be able to calculate an accurate INS position.
- The IMU/antenna position can be changed by specifying the lever arm's
x
,y
andz
parameters in theconfig.yaml
file under theins_spatial_config.ant_lever_arm
parameter.
Compensate for IMU Orientation
+ It is important to take into consideration the mounting direction of the IMU in the body frame of the vehicle. For e.g. when the receiver is installed horizontally with the front panel facing the direction of travel, we must compensate for the IMU’s orientation to make sure the IMU reference frame is aligned with the vehicle reference frame. The IMU position and orientation is printed on the top panel, cf. image below. + The IMU's orientation can be changed by specifying the orientation anglestheta_x
,theta_y
andtheta_z
in theconfig.yaml
file underins_spatial_config.imu_orientation
+ The below image illustrates the orientation of the IMU reference frame with the associated IMU orientation for the depicted installation. Note that foruse_ros_axis_orientation: true
sensor_default is the top left position. -
These Steps should be followed to configure the receiver in INS integration mode:
- Specify
receiver_type: INS
- Specify the orientation of the IMU sensor with respect to your vehicle, using the
ins_spatial_config.imu_orientation
parameter. - Specify the IMU-antenna lever arm in the vehicle reference frame. This is the vector starting from the IMU reference point to the ARP of the main GNSS antenna. This can be done by means of the
ins_spatial_config.ant_lever_arm
parameter. - Specify
ins_spatial_config.vsm_lever_arm
if measurements of a velocity sensor is available. - Alternatively the lever arms may be specified via tf. Set
get_spatial_config_from_tf
totrue
in this case. - If the point of interest is neither the IMU nor the ARP of the main GNSS antenna, the vector between the IMU and the point of interest can be provided with the
ins_solution/poi_lever_arm
parameter.
- Specify
For further more information about Septentrio receivers, visit Septentrio support resources or check out the user manual and reference guide of the AsteRx SBi3 receiver.
ROSaic Parameters
The following is a list of ROSaic parameters found in the config/rover.yaml
file. Note, that in the following nested parameters are depicted in ROS 2 style, i.e., using a .
as delimiter, whereas in ROS 1 the delimiter is a /
.
* Parameters Configuring Communication Ports and Processing of GNSS and INS Data
Connectivity Specs
-
device
: location of main device connection. This interface will be used for setup communication and VSM data for INS. Incoming data streams of SBF blocks and NMEA sentences are recevied either via this interface or a static IP server for TCP and/or UDP. The former will be utilized if sectionstream_device.tcp
andstream_device.udp
are not configured.-
serial:xxx
format for serial connections,where xxx is the device node, e.g.serial:/dev/ttyS0
. If using serial over USB, it is recommended to specify the port by ID as the Rx may get a different ttyXXX on reconnection, e.g.serial:/dev/serial/by-id/usb-Septentrio_Septentrio_USB_Device_xyz
. -
file_name:path/to/file.sbf
format for publishing from an SBF log. When reading from a file,use_gnss_time
is automatically set to true, since constructing the time stamps from ROS time would not match the data. If the sbf log does not containReceiverTime
, parameterleap_seconds
must be set manually. -
file_name:path/to/file.pcap
format for publishing from PCAP capture. When reading from a file,use_gnss_time
is automatically set to true, since constructing the time stamps from ROS time would not match the data. If the pcap log does not containReceiverTime
, parameterleap_seconds
must be set manually.- Regarding the file path, ROS_HOME=`pwd` in front of
roslaunch septentrio...
might be useful to specify that the node should be started using the executable's directory as its working-directory.
- Regarding the file path, ROS_HOME=`pwd` in front of
-
tcp://host:port
format for TCP/IP connections-
28784
should be used as the default (command) port for TCP/IP connections. If another port is specified, the receiver needs to be (re-)configured via the Web Interface before ROSaic can be used. - An RNDIS IP interface is provided via USB, assigning the address
192.168.3.1
to the receiver. This should work on most modern Linux distributions. To verify successful connection, open a web browser to access the web interface of the receiver using the IP address192.168.3.1
.
-
- default:
tcp://192.168.3.1:28784
-
-
serial
: specifications for serial communication-
baudrate
: serial baud rate to be used in a serial connection. Ensure the provided rate is sufficient for the chosen SBF blocks. For example, activating MeasEpoch (also necessary for /gpsfix) may require up to almost 400 kBit/s. -
rx_serial_port
: determines to which (virtual) serial port of the Rx we want to get connected to, e.g. USB1 or COM1 -
hw_flow_control
: specifies whether the serial (the Rx's COM ports, not USB1 or USB2) connection to the Rx should have UART hardware flow control enabled or not-
off
to disable UART hardware flow control,RTS|CTS
to enable it
-
- default:
921600
,USB1
,off
-
-
stream_device
: If left unconfigured, by defaultdevice
is utilized for the data streams. Withinstream_device
static IP servers may be defined instead. In config mode (configure_rx
set totrue
), TCP will be prioritized over UDP. If Rx is pre-configured, both may be set simultaneously.-
tcp
: specifications for static TCP server of SBF blocks and NMEA sentences.-
ip_server
: IP server of Rx to be used, e.g. “IPS1”. -
port
: UDP destination port.
-
-
udp
: specifications for low latency UDP reception of SBF blocks and NMEA sentences.-
ip_server
: IP server of Rx to be used, e.g. “IPS1”. -
port
: UDP destination port. -
unicast_ip
: Set to computer's IP to use unicast (optional). If not set multicast will be used.
-
-
-
login
: credentials for user authentication to perform actions not allowed to anonymous users. Leave empty for anonymous access.-
user
: user name -
password
: password
-
-
custom_commands_file
: path to a file containing custom commands to be sent to the Rx. The file shall contain one command per line. Be very careful using this command, since commands are sent to the Rx without further checks.
OSNMA
-
osnma
: Configuration of the Open Service Navigation Message Authentication (OSNMA) feature.-
mode
: Three operating modes are supported:off
where OSNMA authentication is disabled,loose
where satellites are included in the PVT if they are successfully authenticated or if their authentication status is unknown, andstrict
where only successfully-authenticated satellites are included in the PVT. In case ofstrict
synchronization via NTP is mandatory.- default: off
-
ntp_server
: Instrict
mode, OSNMA authentication requires the availability of external time information. Inloose
mode, this is optional but recommended for enhanced security. The receiver can connect to an NTP time server for this purpose. Options aredefault
to let the receiver choose an NTP server or specify one likepool.ntp.org
for example.- default: ""
-
keep_open
: Wether OSNMA shall be kept active on driver shutdown.- default: true
-
Receiver Configuration
+ configure_rx: Wether to configure the Rx according to the config file. If set to `false`, the Rx has to be configured via the web interface and the settings must be saved. On the driver side communication has to set accordingly to serial, TCP or UDP (TCP and UDP may even be used simultaneously in this case). For TCP communication it is recommended to use a static TCP server (`stream_device.tcp.ip_server` and `stream_device.tcp.port`), since dynamic connections (`device` is tcp) are not guaranteed to have the same id on reconnection. It should also be ensured that obligatory SBF blocks are activated (as of now: ReceiverTime if `use_gnss_time` is set to `true`; `PVTGeodetic`or `PVTCartesian` if latency compensation for PVT related blocks shall be used). Further, if ROS messages compiled from multiple SBF blocks, it should be ensured that all necessary blocks are activated with matching periods, details can be found in section [ROS Topic Publications](#ros-topic-publications). The messages that shall be published still have to be set to `true` in the *NMEA/SBF Messages to be Published* section. Also, parameters concerning the connection and node setup are still relevant (sections: *Connectivity Specs*, *receiver type*, *Frame IDs*, *UTM Zone Locking*, *Time Systems*, *Logger*).
+ default: true
Receiver Type
-
receiver_type
: This parameter is to select the type of the Septentrio receiver-
gnss
for GNSS receivers. -
ins
for INS receivers. - default:
gnss
-
-
multi_antenna
: Whether or not the Rx has multiple antennas.- default:
false
- default:
Frame IDs
-
frame_id
: name of the ROS tf frame for the Rx, placed in the header of published GNSS messages. It corresponds to the frame of the main antenna.- In ROS, the tf package lets you keep track of multiple coordinate frames over time. The frame ID will be resolved by
tf_prefix
if defined. If a ROS message has a header (all of those we publish do), the frame ID can be found viarostopic echo /topic
, where/topic
is the topic into which the message is being published. - default:
gnss
- In ROS, the tf package lets you keep track of multiple coordinate frames over time. The frame ID will be resolved by
-
imu_frame_id
: name of the ROS tf frame for the IMU, placed in the header of published IMU message- default:
imu
- default:
-
poi_frame_id
: name of the ROS tf frame for the POI, placed in the child frame_id of localization ifins_use_poi
is set totrue
.- default:
base_link
- default:
-
vsm_frame_id
: name of the ROS tf frame for the velocity sensor.- default:
vsm
- default:
-
aux1_frame_id
: name of the ROS tf frame for the aux1 antenna.- default:
aux1
- default:
-
vehicle_frame_id
: name of the ROS tf frame for the vehicle. Default is the same aspoi_frame_id
but may be set otherwise.- default:
base_link
- default:
-
local_frame_id
: name of the ROS tf frame for the local frame.- default:
odom
- default:
-
insert_local_frame
: Wether to insert a local frame to published tf according to ROS REP 105. The transform from the local frame specified bylocal_frame_id
to the vehicle frame specified byvehicle_frame_id
has to be provided, e.g. by odometry. Insertion of the local frame means the transform between local frame and global frame is published instead of transform between vehicle frame and global frame.- default:
false
- default:
-
get_spatial_config_from_tf
: wether to get the spatial config via tf with the above mentioned frame ids. This will override spatial settings of the config file. For receiver typeins
withmulti_antenna
set totrue
all frames have to be provided, withmulti_antenna
set tofalse
,aux1_frame_id
is not necessary. For typegnss
with dual-antenna setup onlyframe_id
,aux1_frame_id
, andpoi_frame_id
are needed. For single-antennagnss
no frames are needed. Keep in mind that tf has a tree structure. Thus,poi_frame_id
is the base for all mentioned frames.- default:
false
- default:
-
use_ros_axis_orientation
Wether to use ROS axis orientations according to ROS REP 103 for body related frames and geographic frames. Body frame directions affect INS lever arms and IMU orientation setup parameters. Geographic frame directions affect orientation Euler angles for INS+GNSS and attitude of dual-antenna GNSS. Ifuse_ros_axis_orientation
is set totrue
, the driver converts between the NED convention (Septentrio: yaw = 0 is north, positive clockwise), and ENU convention (ROS: yaw = 0 is east, positive counterclockwise). There is no conversion when setting this parameter tofalse
and the angles will be consistent with the web GUI in this case.- If set to
false
Septentrios definition is used, i.e., front-right-down body related frames and NED (north-east-down) for orientation frames. - If set to
true
ROS definition is used, i.e., front-left-up body related frames and ENU (east-north-up) for orientation frames. - default:
true
- If set to
UTM zone locking
+ lock_utm_zone
: wether the UTM zone of the initial localization is locked, i.e., this zone is kept even if a zone transition would occur.
+ default: true
Datum
-
datum
: With this command, the datum the coordinates should refer to is selected. With setting it toDefault
, the datum depends on the positioning mode, e.g.WGS84
for standalone positioning.- Since the standardized GGA message does only provide the orthometric height (= MSL height = distance from Earth's surface to geoid) and the geoid undulation (distance from geoid to ellipsoid) for which non-WGS84 datums cannot be specified, it does not affect the GGA message.
- default:
Default
POI-ARP Offset
+ `poi_to_arp`: offsets of the main GNSS antenna reference point (ARP) with respect to the point of interest (POI = marker). Use for static receivers only.
+ The parameters `delta_e`, `delta_n` and `delta_u` are the offsets in the East, North and Up (ENU) directions respectively, expressed in meters.
+ All absolute positions reported by the receiver are POI positions, obtained by subtracting this offset from the ARP. The purpose is to take into account the fact that the antenna may not be located directly on the surveying POI.
+ default: `0.0`, `0.0` and `0.0`
Antenna Attitude Offset
+ `att_offset`: Angular offset between two antennas (Main and Aux) and vehicle frame
+ `heading`: The perpendicular (azimuth) axis can be compensated for by adjusting the `heading` parameter
+ `pitch`: Vertical (elevation) offset can be compensated for by adjusting the `pitch` parameter
+ default: `0.0`, `0.0` (degrees)
Antenna Specs
-
ant_type
: type of your main GNSS antenna- For best positional accuracy, it is recommended to select a type from the list returned by the command
lstAntennaInfo, Overview
. This is the list of antennas for which the receiver can compensate for phase center variation. - By default and if
ant_type
does not match any entry in the list returned bylstAntennaInfo, Overview
, the receiver will assume that the phase center variation is zero at all elevations and frequency bands, and the position will not be as accurate. - default:
Unknown
- For best positional accuracy, it is recommended to select a type from the list returned by the command
-
ant_serial_nr
: serial number of your main GNSS antenna -
ant_aux1_type
andant_aux1_serial_nr
: same for Aux1 antenna
Leap Seconds
-
leap_seconds
: Leap seconds are automatically gathered from the receiver via the SBF blockReceiverTime
. If a log file is used for simulation and this block was not recorded, the number of leap seconds that have been inserted up until the point of ROSaic usage can be set by this parameter.- At the time of writing the code (2020), the GPS time, which is unaffected by leap seconds, was ahead of UTC time by 18 leap seconds. Adapt the
leap_seconds
parameter accordingly as soon as the next leap second is inserted into the UTC time or in case you are using ROSaic for the purpose of simulations.
- At the time of writing the code (2020), the GPS time, which is unaffected by leap seconds, was ahead of UTC time by 18 leap seconds. Adapt the
Polling Periods
-
polling_period.pvt
: desired period in milliseconds between the polling of two consecutivePVTGeodetic
,PosCovGeodetic
,PVTCartesian
andPosCovCartesian
blocks and - if published - between the publishing of two of the corresponding ROS messages (e.g.septentrio_gnss_driver/PVTGeodetic.msg
). Consult firmware manual for allowed periods. If the period is set to a lower value than the receiver is capable of, it will be published with the next higher period. If set to0
, the SBF blocks are output at their natural renewal rate (OnChange
).- Clearly, the publishing of composite ROS messages such as
sensor_msgs/NavSatFix.msg
orgps_msgs/GPSFix.msg
is triggered by the SBF block that arrives last among the blocks of the current epoch. - default:
500
(2 Hz)
- Clearly, the publishing of composite ROS messages such as
-
polling_period.rest
: desired period in milliseconds between the polling of all other SBF blocks and NMEA sentences not addressed by the previous parameter, and - if published - between the publishing of all other ROS messages- default:
500
(2 Hz)
- default:
Time Systems
-
use_gnss_time
:true
if the ROS message headers' unix epoch time field shall be constructed from the TOW/WNC (in the SBF case) and UTC (in the NMEA case) data,false
if those times shall be taken by the driver from ROS time. Ifuse_gnss_time
is set totrue
, it is imperative that the ROS system is synchronized to an NTP time server or PTP clock either via internet or ideally via the Septentrio receiver since the latter serves as a Stratum 1 time server not dependent on an internet connection. If this is not followed, the time stamps may drift apart!- default:
false
- default:
-
ntp_server
: Wether the NTP server shall be activated.- default:
false
- default:
-
ptp_server_clock
: Wether the PTP server slcok hall be activated.- default:
false
- default:
-
latency_compensation
: Rx reports processing latency in PVT and INS blocks. If set totrue
this latency is subtracted from ROS timestamps in related blocks (i.e.,use_gnss_time
set tofalse
). Related blocks are INS, PVT, Covariances, and BaseVectors. In case ofuse_gnss_time
set totrue
, the latency is already compensated within the RX and included in the reported timestamps.- default:
false
- default:
RTK corrections
-
rtk_settings
: determines RTK connection parameters- There are multiple possibilities to feed RTK corrections to the Rx. They may be set simultaneously and the Rx will choose the nearest source.
- a)
ntrip_#
if the Rx has internet access and is able to receieve NTRIP streams from a caster. Up to three NTRIP connections are possible. - b)
ip_server_#
if corrections are to be receieved via TCP/IP for example overData Link
from Septentrio's RxTools is installed on a computer. Up to five IP server connections are possible. - c)
serial_#
if corrections are to be receieved via a serial port for example over radio link from a local RTK base or overData Link
from Septentrio's RxTools installed on a computer. Up to five serial connections are possible.
- a)
-
ntrip_#
: for receiving corretions from an NTRIP caster (#
is from 1 ... 3).-
id
: NTRIP connectionNTR1
,NTR2
, orNTR3
. - default: ""
-
caster
: is the hostname or IP address of the NTRIP caster to connect to. - default: ""
-
caster_port
: IP port of the NTRIP caster. - default: 2021
-
username
: user name for the NTRIP caster. - default: ""
-
pasword
: password for the NTRIP caster. The receiver encrypts the password so that it cannot be read back with the command "getNtripSettings". - default: ""
-
mountpoint
: mount point of the NTRP caster to be used. - default: ""
-
version
: argument specifies which version of the NTRIP protocol to use (v1
orv2
). - default: "v2"
-
tls
: determines wether to use TLS. - default: false
-
fingerprint
: fingerprint to be used if the certificate is self-signed. If the caster’s certificate is known by a publicly-trusted certification authority, fingerprint should be left empty. - default: ""
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: "auto"
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver automatically sends GGA messages if requested by the caster. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
-
ip_server_#
: for receiving corretions via TCP/IP (#
is from 1 ... 5).-
id
: specifies the IP serverIPS1
,IPS2
,IPS3
,IPS4
, orIPS5
. Note that ROSaic will send GGA messages on this connection ifsend_gga
is set, such that in theData Link
application ofRxTools
one just needs to set up a TCP client to the host name as found in the ROSaic parameterdevice
with the port as found inport
. If the latter connection were connection 1 onData Link
, then connection 2 would set up an NTRIP client connecting to the NTRIP caster as specified in the above parameters in order to forward the corrections from connection 2 to connection 1. - default: ""
-
port
: its port number of the connection that ROSaic establishes on the receiver. When selecting a port number, make sure to avoid conflicts with other services. - default: 0
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: ""
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver sends withsec1
. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
-
serial_#
: for receiving corretions via serial connection (#
is from 1 ... 5).-
port
: Serial connectionCOM1
,COM2
,COM3
,USB1
, orUSB2
on which corrections could be forwarded to the Rx from a serially connected radio link modem or viaData Link
for example. - default: ""
-
baud_rate
: sets the baud rate of this port for genuine serial ports, i.e., not relevant for USB connection. - default: 115200
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: "auto"
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver sends withsec1
. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
- There are multiple possibilities to feed RTK corrections to the Rx. They may be set simultaneously and the Rx will choose the nearest source.
INS Specs
+ `ins_spatial_config`: Spatial configuration of INS/IMU. Coordinates according to vehicle related frame directions chosen by `use_ros_axis_orientation` (front-left-up if `true` and front-right-down if `false`).
+ `imu_orientation`: IMU sensor orientation
+ Parameters `theta_x`, `theta_y` and `theta_z` are used to determine the sensor orientation with respect to the vehicle frame. Positive angles correspond to a right-handed (clockwise) rotation of the IMU with respect to its nominal orientation (see below). The order of the rotations is as follows: `theta_z` first, then `theta_y`, then `theta_x`.
+ The nominal orientation is where the IMU is upside down and with the `X axis` marked on the receiver pointing to the front of the vehicle. By contrast, for `use_ros_axis_orientation: true`, nominal orientation is where the `Z axis` of the IMU is pointing upwards and also with the `X axis` marked on the receiver pointing to the front of the vehicle.
+ default: `0.0`, `0.0`, `0.0` (degrees)
+ `poi_lever_arm`: The lever arm from the IMU reference point to a user-defined POI
+ Parameters `delta_x`,`delta_y` and `delta_z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `ant_lever_arm`: The lever arm from the IMU reference point to the main GNSS antenna
+ The parameters `x`,`y` and `z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `vsm_lever_arm`: The lever arm from the IMU reference point to the velocity sensor
+ The parameters `vsm_x`,`vsm_y` and `vsm_z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `ins_initial_heading`: How the receiver obtains the initial INS/GNSS integrated heading during the alignment phase
+ In case it is `auto`, the initial integrated heading is determined from GNSS measurements.
+ In case it is `stored`, the last known heading when the vehicle stopped before switching off the receiver is used as initial heading. Use if vehicle does not move when the receiver is switched off.
+ default: `auto`
+ `ins_std_dev_mask`: Maximum accepted error
+ `att_std_dev`: Configures an output limit on standard deviation of the attitude angles (max error accepted: 5 degrees)
+ `pos_std_dev`: Configures an output limit on standard deviation of the position (max error accepted: 100 meters)
+ default: `5` degrees, `10` meters
+ `ins_use_poi`: Whether or not to use the POI defined in `ins_spatial_config.poi_lever_arm`
+ If true, the point at which the INS navigation solution (e.g. in `insnavgeod` ROS topic) is calculated will be the POI as defined above (`poi_frame_id`), otherwise it'll be the main GNSS antenna (`frame_id`). Has to be set to `true` if tf shall be published.
+ default: `true`
+ `ins_vsm`: Configuration of the velocity sensor measurements. IP server may be used to receive velocity information from ROS or from an external device. Serial connection may be used to receive velocity information from an external device only.
+ `ros`: VSM info received from ROS msgs
+ `source`: Specifies which ROS message type shall be used, options are `odometry` or `twist`. Accordingly, a subscriber is established of the type [`nav_msgs/Odometry.msg`](https://docs.ros2.org/foxy/api/nav_msgs/msg/Odometry.html) or [`geometry_msgs/TwistWithCovarianceStamped.msg`](https://docs.ros2.org/foxy/api/geometry_msgs/msg/TwistWithCovarianceStamped.html) listening on the topics `odometry_vsm` or `twist_vsm` respectively. Only linear velocities are evaluated. Measurements have to be with respect to the frame aligned with the vehicle and defined by `ins_spatial_config.vsm_lever_arm` or tf-frame `vsm_frame_id`, see also comment in [`nav_msgs/Odometry.msg`](https://docs.ros2.org/foxy/api/nav_msgs/msg/Odometry.html) that twist should be specified in `child_frame_id`.
+ default: ""
+ `config`: Defines which measurements belonging to the respective axes are forwarded to the INS. In addition, non-holonomic constraints may be introduced for directions known to be restricted in movement. For example, a vehicle with Ackermann steering is limited in its sidewards and upwards movement. So, even if only motion in x-direction may be measured, zero-velocities for y and z may be sent. Only has to be set if `ins_vsm.ros.source`is set to `odometry` or `twist`.
+ default: []
+ `variances_by_parameter`: Wether variances shall be entered by parameter `ins_vsm.ros.variances` or the values from inside the ROS messages are used. Only has to be set if `ins_vsm.source`is set to `odometry` or `twist`.
+ default: false
+ `variances`: Variances of the respective axes. Only have to be set if `ins_vsm.variances_by_parameter` is set to `true`. Values must be > 0.0, else measurements cannot not be used.
+ default: []
+ `ip_server`:
+ `id`: IP server to receive the VSM info (e.g. `IPS1`). If a TCP stream device (`device.stream_device.tcp`) is set up, this device may be used here, i.e, `id` my be set to the same.
+ default: "IPS5"
+ `port`: TCP port to receive the VSM info. When selecting a port number, make sure to avoid conflicts with other services.
+ default: 24786
+ `keep_open` determines wether this connections to receive VSM shall be kept open on driver shutdown. If set to `true` the Rx will still be able to use external VSM info to improve its localization.
+ default: `true`
+ `serial`:
+ `port`: Serial port to receive the VSM info.
+ default: ""
+ `baud_rate`: Baud rate of the serial port to receive the VSM info.
+ default: 115200
+ `keep_open` determines wether this connections to receive VSM shall be kept open on driver shutdown. If set to `true` the Rx will still be able to use external VSM info to improve its localization.
+ default: `true`
Logger
+ `activate_debug_log`: `true` if ROS logger level shall be set to debug.
-
Parameters Configuring (Non-)Publishing of ROS Messages
NMEA/SBF Messages to be Published
-
publish.auto_publish
:true
to automatically publish messages for which SBF blocks and NMEA sentences are available. Only applicable ifconigure_rx
isfalse
. Iftf_ecef
shall be published, this must be explicitily set to true, else tf in UTM is published if available. -
publish.publish_only_valid
:true
to publish SBF blocks only if timestamp (TOW) is valid. -
publish.gpgga
:true
to publishnmea_msgs/GPGGA.msg
messages into the topic/gpgga
-
publish.gprmc
:true
to publishnmea_msgs/GPRMC.msg
messages into the topic/gprmc
-
publish.gpgsa
:true
to publishnmea_msgs/GPGSA.msg
messages into the topic/gpgsa
-
publish.gpgsv
:true
to publishnmea_msgs/GPGSV.msg
messages into the topic/gpgsv
-
publish.measepoch
:true
to publishseptentrio_gnss_driver/MeasEpoch.msg
messages into the topic/measepoch
-
publish.galauthstatus
:true
to publishseptentrio_gnss_driver/GALAuthStatus.msg
messages into the topic/galauthstatus
and corresponding/diganostics
-
publish.aimplusstatus
:true
to publishseptentrio_gnss_driver/RFStatus.msg
messages into the topic/rfstatus
,septentrio_gnss_driver/AIMPlusStatus.msg
messages into/aimplusstatus
and corresponding/diganostics
. Some information is only available with active OSNMA. -
publish.pvtcartesian
:true
to publishseptentrio_gnss_driver/PVTCartesian.msg
messages into the topic/pvtcartesian
-
publish.pvtgeodetic
:true
to publishseptentrio_gnss_driver/PVTGeodetic.msg
messages into the topic/pvtgeodetic
-
publish.basevectorcart
:true
to publishseptentrio_gnss_driver/BaseVectorCart.msg
messages into the topic/basevectorcart
-
publish.basevectorgeod
:true
to publishseptentrio_gnss_driver/BaseVectorGeod.msg
messages into the topic/basevectorgeod
-
publish.poscovcartesian
:true
to publishseptentrio_gnss_driver/PosCovCartesian.msg
messages into the topic/poscovcartesian
-
publish.poscovgeodetic
:true
to publishseptentrio_gnss_driver/PosCovGeodetic.msg
messages into the topic/poscovgeodetic
-
publish.velcovcartesian
:true
to publishseptentrio_gnss_driver/VelCovCartesian.msg
messages into the topic/velcovcartesian
-
publish.velcovgeodetic
:true
to publishseptentrio_gnss_driver/VelCovGeodetic.msg
messages into the topic/velcovgeodetic
-
publish.atteuler
:true
to publishseptentrio_gnss_driver/AttEuler.msg
messages into the topic/atteuler
-
publish.attcoveuler
:true
to publishseptentrio_gnss_driver/AttCovEuler.msg
messages into the topic/attcoveuler
-
publish.gpst
:true
to publishsensor_msgs/TimeReference.msg
messages into the topic/gpst
-
publish.navsatfix
:true
to publishsensor_msgs/NavSatFix.msg
messages into the topic/navsatfix
-
publish.gpsfix
:true
to publishgps_msgs/GPSFix.msg
messages into the topic/gpsfix
-
publish.pose
:true
to publishgeometry_msgs/PoseWithCovarianceStamped.msg
messages into the topic/pose
-
publish.twist
:true
to publishgeometry_msgs/TwistWithCovarianceStamped.msg
messages into the topics/twist
and/twist_ins
respectively -
publish.diagnostics
:true
to publishdiagnostic_msgs/DiagnosticArray.msg
messages into the topic/diagnostics
-
publish.insnavcart
:true
to publishseptentrio_gnss_driver/INSNavCart.msg
message into the topic/insnavcart
-
publish.insnavgeod
:true
to publishseptentrio_gnss_driver/INSNavGeod.msg
message into the topic/insnavgeod
-
publish.extsensormeas
:true
to publishseptentrio_gnss_driver/ExtSensorMeas.msg
message into the topic/extsensormeas
-
publish.imusetup
:true
to publishseptentrio_gnss_driver/IMUSetup.msg
message into the topic/imusetup
-
publish.velsensorsetup
:true
to publishseptentrio_gnss_driver/VelSensorSetup.msgs
message into the topic/velsensorsetup
-
publish.exteventinsnavcart
:true
to publishseptentrio_gnss_driver/ExtEventINSNavCart.msgs
message into the topic/exteventinsnavcart
-
publish.exteventinsnavgeod
:true
to publishseptentrio_gnss_driver/ExtEventINSNavGeod.msgs
message into the topic/exteventinsnavgeod
-
publish.imu
:true
to publishsensor_msgs/Imu.msg
message into the topic/imu
-
publish.localization
:true
to publishnav_msgs/Odometry.msg
message into the topic/localization
-
publish.tf
:true
to broadcast tf of localization.ins_use_poi
must also be set to true to publish tf. Note that only one ofpublish.tf
orpublish.tf_ecef
may betrue
.
-
publish.localization_ecef
:true
to publishnav_msgs/Odometry.msg
message into the topic/localization
related to ECEF frame. -
publish.tf_ecef
:true
to broadcast tf of localization related to ECEF frame.ins_use_poi
must also be set to true to publish tf. Note that only one ofpublish.tf
orpublish.tf_ecef
may betrue
.
-
ROS Topic Publications
A selection of NMEA sentences, the majority being standardized sentences, and proprietary SBF blocks is translated into ROS messages, partly generic and partly custom, and can be published at the discretion of the user into the following ROS topics. All published ROS messages, even custom ones, start with a ROS generic header std_msgs/Header.msg
, which includes the receiver time stamp as well as the frame ID, the latter being specified in the ROS parameter frame_id
.
Available ROS Topics
-
/gpgga
: publishesnmea_msgs/Gpgga.msg
- converted from the NMEA sentence GGA. -
/gprmc
: publishesnmea_msgs/Gprmc.msg
- converted from the NMEA sentence RMC. -
/gpgsa
: publishesnmea_msgs/Gpgsa.msg
- converted from the NMEA sentence GSA. -
/gpgsv
: publishesnmea_msgs/Gpgsv.msg
- converted from the NMEA sentence GSV. -
/measepoch
: publishes custom ROS messageseptentrio_gnss_driver/MeasEpoch.msg
, corresponding to the SBF blockMeasEpoch
.
-
/galauthstatus
: publishes custom ROS messageseptentrio_gnss_driver/GALAuthStatus.msg
, corresponding to the SBF blockGALAuthStatus
. -
/rfstatus
: publishes custom ROS messageseptentrio_gnss_driver/RFStatus.msg
, compiled from the SBF blockRFStatus
. -
/aimplusstatus
: publishes custom ROS messageseptentrio_gnss_driver/AIMPlusStatus.msg
, reporting status of AIM+. Converted from SBF blocksRFStatus
and optionallyGALAuthStatus
. For the latter OSNMA has to be activated. -
/pvtcartesian
: publishes custom ROS messageseptentrio_gnss_driver/PVTCartesian.msg
, corresponding to the SBF blockPVTCartesian
(GNSS case) orINSNavGeod
(INS case). -
/pvtgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/PVTGeodetic.msg
, corresponding to the SBF blockPVTGeodetic
(GNSS case) orINSNavGeod
(INS case). -
/basevectorcart
: publishes custom ROS messageseptentrio_gnss_driver/BaseVectorCart.msg
, corresponding to the SBF blockBaseVectorCart
. -
/basevectorgeod
: publishes custom ROS messageseptentrio_gnss_driver/BaseVectorGeod.msg
, corresponding to the SBF blockBaseVectorGeod
. -
/poscovcartesian
: publishes custom ROS messageseptentrio_gnss_driver/PosCovCartesian.msg
, corresponding to SBF blockPosCovCartesian
(GNSS case) orINSNavGeod
(INS case). -
/poscovgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/PosCovGeodetic.msg
, corresponding to SBF blockPosCovGeodetic
(GNSS case) orINSNavGeod
(INS case). -
/velcovcartesian
: publishes custom ROS messageseptentrio_gnss_driver/VelCovCartesian.msg
, corresponding to SBF blockVelCovCartesian
(GNSS case). -
/velcovgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/VelCovGeodetic.msg
, corresponding to SBF blockVelCovGeodetic
(GNSS case). -
/atteuler
: publishes custom ROS messageseptentrio_gnss_driver/AttEuler.msg
, corresponding to SBF blockAttEuler
. -
/attcoveuler
: publishes custom ROS messageseptentrio_gnss_driver/AttCovEuler.msg
, corresponding to the SBF blockAttCovEuler
. -
/gpst
(for GPS Time): publishes generic ROS messagesensor_msgs/TimeReference.msg
, converted from thePVTGeodetic
(GNSS case) orINSNavGeod
(INS case) block's GPS time information, stored in its block header. -
/navsatfix
: publishes generic ROS messagesensor_msgs/NavSatFix.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
(GNSS case) orINSNavGeod
(INS case)- The ROS message
sensor_msgs/NavSatFix.msg
can be fed directly into thenavsat_transform_node
of the ROS navigation stack.
- The ROS message
-
/gpsfix
: publishes generic ROS messagegps_msgs/GPSFix.msg
, which is much more detailed thansensor_msgs/NavSatFix.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
,ChannelStatus
,MeasEpoch
,AttEuler
,AttCovEuler
,VelCovGeodetic
,DOP
(GNSS case) orINSNavGeod
,ChannelStatus
,MeasEpoch
,DOP
(INS case). In order to publish heading information, the field dip is diverted from its intended meaning an populated with the heading angle and err_dip with its uncertainty.- INS case: Beware, in order to allow a high update rate,
ChannelStatus
,MeasEpoch
, andDOP
are not time aligned, i.e., they might contain outdated information.
- INS case: Beware, in order to allow a high update rate,
-
/pose
: publishes generic ROS messagegeometry_msgs/PoseWithCovarianceStamped.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
,AttEuler
,AttCovEuler
(GNSS case) orINSNavGeod
(INS case).- Note that GNSS provides absolute positioning, while robots are often localized within a local level cartesian frame. The pose field of this ROS message contains position with respect to the absolute ENU frame (longitude, latitude, height), i.e. not a cartesian frame, while the orientation is with respect to a vehicle-fixed (e.g. for mosaic-x5 in moving base mode via the command
setAttitudeOffset
, ...) !local! NED frame or ENU frame ifuse_ros_axis_directions
is settrue
. Thus the orientation is !not! given with respect to the same frame as the position is given in. The cross-covariances are hence set to 0.
- Note that GNSS provides absolute positioning, while robots are often localized within a local level cartesian frame. The pose field of this ROS message contains position with respect to the absolute ENU frame (longitude, latitude, height), i.e. not a cartesian frame, while the orientation is with respect to a vehicle-fixed (e.g. for mosaic-x5 in moving base mode via the command
-
/twist
: publishes generic ROS messagegeometry_msgs/TwistWithCovarianceStamped.msg
, converted from the SBF blocksPVTGeodetic
andVelCovGeodetic
. -
/twist_ins
: publishes generic ROS messagegeometry_msgs/TwistWithCovarianceStamped.msg
, converted from SBF blockINSNavGeod
. -
/insnavcart
: publishes custom ROS messageseptentrio_gnss_driver/INSNavCart.msg
, corresponding to SBF blockINSNavCart
-
/insnavgeod
: publishes custom ROS messageseptentrio_gnss_driver/INSNavGeod.msg
, corresponding to SBF blockINSNavGeod
-
/extsensormeas
: publishes custom ROS messageseptentrio_gnss_driver/ExtSensorMeas.msg
, corresponding to SBF blockExtSensorMeas
. -
/imusetup
: publishes custom ROS messageseptentrio_gnss_driver/IMUSetup.msg
, corresponding to SBF blockIMUSetup
. -
/velsensorsetup
: publishes custom ROS messageseptentrio_gnss_driver/VelSensorSetup.msg
corresponding to SBF blockVelSensorSetup
. -
/exteventinsnavcart
: publishes custom ROS messageseptentrio_gnss_driver/INSNavCart.msg
, corresponding to SBF blockExtEventINSNavCart
. -
/exteventinsnavgeod
: publishes custom ROS messageseptentrio_gnss_driver/INSNavGeod.msg
, corresponding to SBF blockExtEventINSNavGeod
. -
/diagnostics
: accepts generic ROS messagediagnostic_msgs/DiagnosticArray.msg
, converted from the SBF blocksQualityInd
,ReceiverStatus
andReceiverSetup
-
/imu
: accepts generic ROS messagesensor_msgs/Imu.msg
, converted from the SBF blocksExtSensorMeas
andINSNavGeod
.- The ROS message
sensor_msgs/Imu.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
-
/localization
: accepts generic ROS messagenav_msgs/Odometry.msg
, converted from the SBF blockINSNavGeod
and transformed to UTM.- The ROS message
nav_msgs/Odometry.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
-
/localization_ecef
: accepts generic ROS messagenav_msgs/Odometry.msg
, converted from the SBF blocksINSNavCart
andINSNavGeod
.- The ROS message
nav_msgs/Odometry.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
Suggestions for Improvements
Some Ideas
+ Equip ROSaic with an NTRIP client such that it can forward corrections to the receiver independently of `Data Link`.Adding New SBF Blocks or NMEA Sentences
Steps to Follow
Is there an SBF or NMEA message that is not being addressed while being important to your application? If yes, follow these steps: 1. Find the log reference of interest in the publicly accessible, official documentation. Hence select the reference guide file, e.g. for mosaic-x5 in the [product support section for mosaic-X5](https://www.septentrio.com/en/support/mosaic/mosaic-x5), Chapter 4, of Septentrio's homepage. 2. SBF: Add a new `.msg` file to the `../msg` folder. And modify the `../CMakeLists.txt` file by adding a new entry to the `add_message_files` section. 3. Add msg header and typedef to `typedefs.hpp`. 4. Parsers: - SBF: Add a parser to the `sbf_blocks.hpp` file. - NMEA: Construct two new parsing files such as `gpgga.cpp` to the `../src/septentrio_gnss_driver/parsers/nmea_parsers` folder and one such as `gpgga.hpp` to the `../include/septentrio_gnss_driver/parsers/nmea_parsers` folder. 5. Processing the message/block: - SBF: Extend the `SbfId` enumeration in the `message_handler.hpp` file with a new entry. - SBF: Extend the SBF switch-case in `message_handler.cpp` file with a new case. - NMEA: Extend the `nmeaMap_` in the `message_handler.hpp` file with a new pair. - NMEA: Extend the NMEA switch-case in `message_handler.cpp` file with a new case. 6. Create a new `publish/..` ROSaic parameter in the `../config/rover.yaml` file and create a boolean variable `publish_xxx` in the struct in the `settings.h` file. Parse the parameter in the `rosaic_node.cpp` file. 7. Add SBF block or NMEA to data stream setup in `communication_core.cpp` (function `configureRx()`).CONTRIBUTING
Repository Summary
Checkout URI | https://github.com/septentrio-gnss/septentrio_gnss_driver.git |
VCS Type | git |
VCS Version | master |
Last Updated | 2024-08-04 |
Dev Status | MAINTAINED |
CI status | No Continuous Integration |
Released | RELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Packages
Name | Version |
---|---|
septentrio_gnss_driver | 1.4.1 |
README
ROSaic = ROS + mosaic
Overview
This repository hosts drivers for ROS 1 (Melodic and Noetic) and ROS 2 (Foxy, Galactic, Humble, Iron, Rolling, and beyond) - written in C++ - that work with mosaic and AsteRx - two of Septentrio's cutting-edge GNSS and GNSS/INS receiver families - and beyond. Both ROS 1 and ROS 2 are supported within one repository.
Main Features:
- Supports Septentrio's single antenna GNSS, dual antenna GNSS and INS receivers
- Supports serial, TCP/IP and USB connections, the latter being compatible with both serial (RNDIS) and TCP/IP protocols
- Supports several ASCII (including key NMEA ones) messages and SBF (Septentrio Binary Format) blocks
- Reports status of AIM+ (Advanced Interference Mitigation including OSNMA) anti-jamming and anti-spoofing.
- Can publish nav_msgs/Odometry
message for INS receivers
- Can blend SBF blocks PVTGeodetic
, PosCovGeodetic
, ChannelStatus
, MeasEpoch
, AttEuler
, AttCovEuler
, VelCovGeodetic
and DOP
in order to publish gps_common/GPSFix
and sensor_msgs/NavSatFix
messages
- Supports optional axis convention conversion since Septentrio follows the NED convention, whereas ROS is ENU.
- Easy configuration of multiple RTK corrections simultaneously (via NTRIP, TCP/IP stream, or serial)
- Can play back PCAP capture logs for testing purposes
- Tested with the mosaic-X5, mosaic-H, AsteRx-m3 Pro+, AsteRx-SB Pro+ and the AsteRx-SBi3 Pro receiver
- Easy to add support for more log types
Please let the maintainers know of your success or failure in using the driver with other devices so we can update this page appropriately.
Usage
Important notes
Notes Before Usage
+ The driver assumes that our anonymous access to the Rx grants us full control rights. This should be the case by default, and can otherwise be changed with the `setDefaultAccessLevel` command. If user control is in place user credentials can be given by parameters `login.user` and `login.password`. + Note for serial connection: Make sure the user is part of the `dialout` group to have full access to the serial ports. If not, add it for example with `sudo adduser [username] dialout`. + Note for setting hw_flow_control: This is a string parameter, setting it to off without quotes leads to the fact that it is not read in correctly. + Note for setting ant_(aux1)_serial_nr: This is a string parameter, numeric only serial numbers should be put in quotes. If this is not done a warning will be issued and the driver tries to parse it as integer. + Note for usage of NTRIP via USB with virtual ethernet (RNDIS): RNDIS provides a virtual network connection only between the receiver and the PC. First outgoing network access via USB has to be activated, which is explained [here](https://www.youtube.com/watch?v=bUt8cL9Ue1Y). Next setup internet sharing under Linux by setting the connection of the virtual network interface (the name should be something like enx1a3202991545) to "Shared to other computers". + Once the build or binary installation is finished, adapt the `config/rover.yaml` file according to your needs or assemble a new one, examples for GNSS specific parameters `config/gnss.yaml` and INS `config/ins.yaml` are also available. Specify the communication parameters, the ROS messages to be published, the frequency at which the latter should happen etc.ROS 1: Launch the `launch/rover.launch` to use `rover.yaml` or add `param_file_name:=xxx` to use a custom config.
ROS 2: Launch as composition with `ros2 launch septentrio_gnss_driver rover.launch.py` to use `rover.yaml` or add `file_name:=xxx.yaml` to use a custom config. Alternatively launch as node with `ros2 launch septentrio_gnss_driver rover_node.launch.py` to use `rover_node.yaml` or add `file_name:=xxx.yaml` to use a custom config. Specify the communication parameters, the ROS messages to be published, the frequency at which the latter should happen etc. + Besides the aforementioned config file `rover.yaml` containing all parameters, specialized launch files for GNSS `config/gnss.yaml` and INS `config/ins.yaml` respectively contain only the relevant parameters in each case. - NOTE: Unless `configure_rx` is set to `false`, this driver will overwrite the previous values of the parameters, even if the value is left to zero in the "yaml" file. + The driver was developed and tested with firmware versions >= 4.10.0 for GNSS and >= 1.3.2 for INS. Receivers with older firmware versions are supported but some features may not be available. Known limitations are: * GNSS with firmware < 4.10.0 does not support IP over USB. * GNSS with firmware < 4.12.1 does not support OSNMA. * GNSS with firmware < 4.14 does not support PTP server clock. * INS with firmware <= 1.2.0 does not support velocity aiding. * INS with firmware <= 1.2.0 does not support setting of initial heading. * INS with firmware < 1.3.2 does not support NTP. * INS with firmware < 1.4 does not support OSNMA. * INS with firmware < 1.4.1 does not support improved VSM handling allowing for unknown variances. * INS does not support PTP server clock as of now. + Known issues: * UDP over USB: Blocks are sent twice on GNSS with firmware <= 4.12.1 and INS with firmware <= 1.4. For GNSS it is fixed in version 4.14 (released on June 15th 2023), for INS is fixed in 1.4.1 (released November 2023). + If `use_ros_axis_orientation` to `true` axis orientations are converted by the driver between NED (Septentrio: yaw = 0 is north, positive clockwise) and ENU (ROS: yaw = 0 is east, positive counterclockwise). There is no conversion when setting this parameter to `false` and the angles will be consistent with the web GUI in this case. :
``` # Example configuration Settings for the Rover Rx device: tcp://192.168.3.1:28784 serial: baudrate: 921600 hw_flow_control: "off" stream_device: tcp: ip_server: "" port: 0 udp: ip_server: "" port: 0 unicast_ip: "" configure_rx: true custom_commands_file: "" login: user: "" password: "" osnma: mode: "off" ntp_server: "" keep_open: true frame_id: gnss imu_frame_id: imu poi_frame_id: base_link vsm_frame_id: vsm aux1_frame_id: aux1 vehicle_frame_id: base_link insert_local_frame: false local_frame_id: odom get_spatial_config_from_tf: true lock_utm_zone: true use_ros_axis_orientation: true receiver_type: gnss datum: Default poi_to_arp: delta_e: 0.0 delta_n: 0.0 delta_u: 0.0 att_offset: heading: 0.0 pitch: 0.0 ant_type: Unknown ant_aux1_type: Unknown ant_serial_nr: Unknown ant_aux1_serial_nr: Unknown leap_seconds: 18 polling_period: pvt: 500 rest: 500 use_gnss_time: false ntp_server: false ptp_server_clock: false latency_compensation: false rtk_settings: ntrip_1: id: "NTR1" caster: "1.2.3.4" caster_port: 2101 username: "Asterix" password: "password" mountpoint: "mtpt1" version: "v2" tls: true fingerprint: "AA:BB:56:78:90:12: ... 78:90:12:34" rtk_standard: "RTCMv3" send_gga: "auto" keep_open: true ntrip_2: id: "NTR3" caster: "5.6.7.8" caster_port: 2101 username: "Obelix" password: "password" mountpoint: "mtpt2" version: "v2" tls: false fingerprint: "" rtk_standard: "RTCMv2" send_gga: "auto" keep_open: true ip_server_1: id: "IPS3" port: 28785 rtk_standard: "RTCMv2" send_gga: "auto" keep_open: true ip_server_2: id: "IPS5" port: 28786 rtk_standard: "CMRv2" send_gga: "auto" keep_open: true serial_1: port: "COM1" baud_rate: 230400 rtk_standard: "auto" send_gga: "sec1" keep_open: true serial_2: port: "COM2" baud_rate: 230400 rtk_standard: "auto" send_gga: "off" keep_open: true publish: # For both GNSS and INS Rxs auto_publish: false publish_only_valid: false navsatfix: false gpsfix: true gpgga: false gprmc: false gpst: false measepoch: false pvtcartesian: false pvtgeodetic: true basevectorcart: false basevectorgeod: false poscovcartesian: false poscovgeodetic: true velcovcartesian: false velcovgeodetic: false atteuler: true attcoveuler: true pose: false twist: false diagnostics: false aimplusstatus: true galauthstatus: false # For GNSS Rx only gpgsa: false gpgsv: false # For INS Rx only insnavcart: false insnavgeod: false extsensormeas: false imusetup: false velsensorsetup: false exteventinsnavcart: false exteventinsnavgeod: false imu: false localization: false tf: false localization_ecef: false tf_ecef: false # INS-Specific Parameters ins_spatial_config: imu_orientation: theta_x: 0.0 theta_y: 0.0 theta_z: 0.0 poi_lever_arm: delta_x: 0.0 delta_y: 0.0 delta_z: 0.0 ant_lever_arm: x: 0.0 y: 0.0 z: 0.0 vsm_lever_arm: vsm_x: 0.0 vsm_y: 0.0 vsm_z: 0.0 ins_initial_heading: auto ins_std_dev_mask: att_std_dev: 5.0 pos_std_dev: 10.0 ins_use_poi: true ins_vsm: source: "twist" config: [true, false, false] variances_by_parameter: true variances: [0.1, 0.0, 0.0] ip_server: id: "IPS2" port: 28787 keep_open: true serial: port: "COM3" baud_rate: 115200 keep_open: true # Logger activate_debug_log: false ``` In order to launch ROSaic, the launch command for ROS 1 reads `roslaunch septentrio_gnss_driver rover.launch param_file_name:=rover` and for ROS 2 reads `ros2 launch septentrio_gnss_driver rover.py file_name:=rover.yaml`. If multiple port are utilized for RTK corrections and/or VSM, which shall be closed after driver shutdown (`keep_open: false`), make sure to give the driver enough time to gracefully shutdown as closing the ports takes a few seconds. For ROS 2, this can be accomplished in the launch files by increasing the timeout of SIGTERM (e.g. `sigterm_timeout = '10',`), see example launch files`rover.launch.py`and `rover_node.launch.py` respectively.
Dependencies
ROS
This driver functions on ROS 1 [Melodic](https://wiki.ros.org/melodic/Installation/Ubuntu) and [Noetic](https://wiki.ros.org/noetic/Installation/Ubuntu) or ROS 2 [Foxy](https://docs.ros.org/en/foxy/Installation.html), [Galactic](https://docs.ros.org/en/galactic/Installation.html), [Humble](https://docs.ros.org/en/humble/Installation.html) [Iron](https://docs.ros.org/en/iron/Installation.html), [Jazzy](https://docs.ros.org/en/jazzy/Installation.html), and [Rolling](https://docs.ros.org/en/rolling/Installation.html) (Ubuntu 18.04, 20.04, 22.04, or 24.04 respectively). It is thus necessary to install the ROS version that has been designed for your Linux distro.Binary Install
The binary release is available for ROS 1 (Melodic and Noetic) and ROS 2 (Foxy, Galactic, Humble, Iron, Jazzy, and Rolling). Since Melodic, Foxy, and Galactic are EOL, only Noetic, Humble, Iron, Jazzy, and Rolling will get updated versions. To install the binary package, simply run `sudo apt-get install ros-$ROS_DISTRO-septentrio-gnss-driver`.Build from source
Build
+ Building ROSaic only works from C++17 onwards due to the usage of std::any() etc. #### Dependencies for development Additional ROS packages have to be installed for the NMEA and GPSFix messages.ROS 1: `sudo apt install ros-$ROS_DISTRO-nmea-msgs ros-$ROS_DISTRO-gps-common`.
ROS 2: `sudo apt install ros-$ROS_DISTRO-nmea-msgs ros-$ROS_DISTRO-gps-msgs`.
The serial and TCP/IP communication interface of the ROS driver is established by means of the [Boost C++ library](https://www.boost.org/). In the unlikely event that the below installation instructions fail to install Boost on the fly, please install the Boost libraries via
`sudo apt install libboost-all-dev`.
Conversions from LLA to UTM are incorporated through [GeographicLib](https://geographiclib.sourceforge.io/). Install the necessary headers via
`sudo apt install libgeographic-dev`
or
`sudo apt install libgeographiclib-dev`
since Ubunutu 24.04. respectively.
Compatiblity with PCAP captures are incorporated through [pcap libraries](https://github.com/the-tcpdump-group/libpcap). Install the necessary headers via
`sudo apt install libpcap-dev`.
#### ROS 1 For ROS 1, the package can be built from source using [`catkin_tools`](https://catkin-tools.readthedocs.io/en/latest/installing.html), where the latter can be installed using the command `sudo apt-get install python-catkin-tools` for Melodic or `sudo apt-get install python3-catkin-tools` for Noetic. The typical `catkin_tools` [workflow](https://catkin-tools.readthedocs.io/en/latest/quick_start.html) should suffice: ``` source /opt/ros/${ROS_DISTRO}/setup.bash # In case you do not use the default shell of Ubuntu, you need to source another script, e.g. setup.sh. mkdir -p ~/septentrio/src # Note: Change accordingly depending on where you want your package to be installed. cd ~/septentrio catkin init # Initialize with a hidden marker file catkin config --cmake-args -DCMAKE_BUILD_TYPE=RelWithDebInfo # CMake build types pass compiler-specific flags to your compiler. This type amounts to a release with debug info, while keeping debugging symbols and doing optimization. I.e. for GCC the flags would be -O2, -g and -DNDEBUG. cd src git clone https://github.com/septentrio-gnss/septentrio_gnss_driver rosdep install . --from-paths -i # Might raise "rosaic: Unsupported OS [mint]" warning, if your OS is Linux Mint, since rosdep does not know Mint (and possible other OSes). In that case, add the "--os=ubuntu:saucy" option to "fool" rosdep into believing it faces some Ubuntu version. The syntax is "--os=OS_NAME:OS_VERSION". catkin build # If catkin cannot find empty, tell catkin to use Python 3 by adding "-DPYTHON_EXECUTABLE=/usr/bin/python3". echo "source ~/septentrio/devel/setup.bash" >> ~/.bashrc # It is convenient if the ROS environment variable is automatically added to your bash session every time a new shell is launched. Again, this works for bash shells only. Also note that if you have more than one ROS distribution installed, ~/.bashrc must only source the setup.bash for the version you are currently using. source ~/.bashrc ``` #### ROS 2 For ROS 2, The package has to be built from source using [`colcon`](https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Colcon-Tutorial.html): ``` source /opt/ros/${ROS_DISTRO}/setup.bash # In case you do not use the default shell of Ubuntu, you need to source another script, e.g. setup.sh. mkdir -p ~/septentrio/src # Note: Change accordingly depending on where you want your package to be installed. cd ~/septentrio/src git clone https://github.com/septentrio-gnss/septentrio_gnss_driver git checkout ros2 # Install mentioned dependencies (`sudo apt install ros-$ROS_DISTRO-nmea_msgs ros-$ROS_DISTRO-gps-msgs libboost-all-dev libpcap-dev libgeographic-dev`) colcon build --packages-up-to septentrio_gnss_driver # Be sure to call colcon build in the root folder of your workspace. Launch files are installed, so changing them on the fly in the source folder only works with installing by symlinks: add `--symlink-install` echo "source ~/septentrio/devel/setup.bash" >> ~/.bashrc # It is convenient if the ROS environment variable is automatically added to your bash session every time a new shell is launched. Again, this works for bash shells only. Also note that if you have more than one ROS distribution installed, ~/.bashrc must only source the setup.bash for the version you are currently using. source ~/.bashrc ``` Run tests ``` colcon test --packages-select septentrio_gnss_driver --event-handlers console_direct+ ```
Inertial Navigation System (INS): Basics
- An Inertial Navigation System (INS) is a device which takes the rotation and acceleration solutions as obtained from its Inertial Measurement Unit (IMU) and combines those with position and velocity information from the GNSS module. Compared to a GNSS system with 7D or 8D (dual-antenna systems) phase space solutions, the combined, Kalman-filtered 9D phase space solution (3 for position, 3 for velocity, 3 for orientation) of an INS is more accurate, more precise and more stable against GNSS outages.
-
The IMU is typically made up of a 3-axis accelerometer, a 3-axis gyroscope and sometimes a 3-axis magnetometer and measures the system's angular rate and acceleration.
Measure and Compensate for IMU-Antenna Lever Arm
- The IMU-antenna lever-arm is the relative position between the IMU reference point and the GNSS Antenna Reference Point (ARP), measured in the vehicle frame.
- In case of AsteRx SBi3, the IMU reference point is clearly marked on the top panel of the receiver. It is important to compensate for the effect of the lever arm, otherwise the receiver may not be able to calculate an accurate INS position.
- The IMU/antenna position can be changed by specifying the lever arm's
x
,y
andz
parameters in theconfig.yaml
file under theins_spatial_config.ant_lever_arm
parameter.
Compensate for IMU Orientation
+ It is important to take into consideration the mounting direction of the IMU in the body frame of the vehicle. For e.g. when the receiver is installed horizontally with the front panel facing the direction of travel, we must compensate for the IMU’s orientation to make sure the IMU reference frame is aligned with the vehicle reference frame. The IMU position and orientation is printed on the top panel, cf. image below. + The IMU's orientation can be changed by specifying the orientation anglestheta_x
,theta_y
andtheta_z
in theconfig.yaml
file underins_spatial_config.imu_orientation
+ The below image illustrates the orientation of the IMU reference frame with the associated IMU orientation for the depicted installation. Note that foruse_ros_axis_orientation: true
sensor_default is the top left position. -
These Steps should be followed to configure the receiver in INS integration mode:
- Specify
receiver_type: INS
- Specify the orientation of the IMU sensor with respect to your vehicle, using the
ins_spatial_config.imu_orientation
parameter. - Specify the IMU-antenna lever arm in the vehicle reference frame. This is the vector starting from the IMU reference point to the ARP of the main GNSS antenna. This can be done by means of the
ins_spatial_config.ant_lever_arm
parameter. - Specify
ins_spatial_config.vsm_lever_arm
if measurements of a velocity sensor is available. - Alternatively the lever arms may be specified via tf. Set
get_spatial_config_from_tf
totrue
in this case. - If the point of interest is neither the IMU nor the ARP of the main GNSS antenna, the vector between the IMU and the point of interest can be provided with the
ins_solution/poi_lever_arm
parameter.
- Specify
For further more information about Septentrio receivers, visit Septentrio support resources or check out the user manual and reference guide of the AsteRx SBi3 receiver.
ROSaic Parameters
The following is a list of ROSaic parameters found in the config/rover.yaml
file. Note, that in the following nested parameters are depicted in ROS 2 style, i.e., using a .
as delimiter, whereas in ROS 1 the delimiter is a /
.
* Parameters Configuring Communication Ports and Processing of GNSS and INS Data
Connectivity Specs
-
device
: location of main device connection. This interface will be used for setup communication and VSM data for INS. Incoming data streams of SBF blocks and NMEA sentences are recevied either via this interface or a static IP server for TCP and/or UDP. The former will be utilized if sectionstream_device.tcp
andstream_device.udp
are not configured.-
serial:xxx
format for serial connections,where xxx is the device node, e.g.serial:/dev/ttyS0
. If using serial over USB, it is recommended to specify the port by ID as the Rx may get a different ttyXXX on reconnection, e.g.serial:/dev/serial/by-id/usb-Septentrio_Septentrio_USB_Device_xyz
. -
file_name:path/to/file.sbf
format for publishing from an SBF log. When reading from a file,use_gnss_time
is automatically set to true, since constructing the time stamps from ROS time would not match the data. If the sbf log does not containReceiverTime
, parameterleap_seconds
must be set manually. -
file_name:path/to/file.pcap
format for publishing from PCAP capture. When reading from a file,use_gnss_time
is automatically set to true, since constructing the time stamps from ROS time would not match the data. If the pcap log does not containReceiverTime
, parameterleap_seconds
must be set manually.- Regarding the file path, ROS_HOME=`pwd` in front of
roslaunch septentrio...
might be useful to specify that the node should be started using the executable's directory as its working-directory.
- Regarding the file path, ROS_HOME=`pwd` in front of
-
tcp://host:port
format for TCP/IP connections-
28784
should be used as the default (command) port for TCP/IP connections. If another port is specified, the receiver needs to be (re-)configured via the Web Interface before ROSaic can be used. - An RNDIS IP interface is provided via USB, assigning the address
192.168.3.1
to the receiver. This should work on most modern Linux distributions. To verify successful connection, open a web browser to access the web interface of the receiver using the IP address192.168.3.1
.
-
- default:
tcp://192.168.3.1:28784
-
-
serial
: specifications for serial communication-
baudrate
: serial baud rate to be used in a serial connection. Ensure the provided rate is sufficient for the chosen SBF blocks. For example, activating MeasEpoch (also necessary for /gpsfix) may require up to almost 400 kBit/s. -
rx_serial_port
: determines to which (virtual) serial port of the Rx we want to get connected to, e.g. USB1 or COM1 -
hw_flow_control
: specifies whether the serial (the Rx's COM ports, not USB1 or USB2) connection to the Rx should have UART hardware flow control enabled or not-
off
to disable UART hardware flow control,RTS|CTS
to enable it
-
- default:
921600
,USB1
,off
-
-
stream_device
: If left unconfigured, by defaultdevice
is utilized for the data streams. Withinstream_device
static IP servers may be defined instead. In config mode (configure_rx
set totrue
), TCP will be prioritized over UDP. If Rx is pre-configured, both may be set simultaneously.-
tcp
: specifications for static TCP server of SBF blocks and NMEA sentences.-
ip_server
: IP server of Rx to be used, e.g. “IPS1”. -
port
: UDP destination port.
-
-
udp
: specifications for low latency UDP reception of SBF blocks and NMEA sentences.-
ip_server
: IP server of Rx to be used, e.g. “IPS1”. -
port
: UDP destination port. -
unicast_ip
: Set to computer's IP to use unicast (optional). If not set multicast will be used.
-
-
-
login
: credentials for user authentication to perform actions not allowed to anonymous users. Leave empty for anonymous access.-
user
: user name -
password
: password
-
-
custom_commands_file
: path to a file containing custom commands to be sent to the Rx. The file shall contain one command per line. Be very careful using this command, since commands are sent to the Rx without further checks.
OSNMA
-
osnma
: Configuration of the Open Service Navigation Message Authentication (OSNMA) feature.-
mode
: Three operating modes are supported:off
where OSNMA authentication is disabled,loose
where satellites are included in the PVT if they are successfully authenticated or if their authentication status is unknown, andstrict
where only successfully-authenticated satellites are included in the PVT. In case ofstrict
synchronization via NTP is mandatory.- default: off
-
ntp_server
: Instrict
mode, OSNMA authentication requires the availability of external time information. Inloose
mode, this is optional but recommended for enhanced security. The receiver can connect to an NTP time server for this purpose. Options aredefault
to let the receiver choose an NTP server or specify one likepool.ntp.org
for example.- default: ""
-
keep_open
: Wether OSNMA shall be kept active on driver shutdown.- default: true
-
Receiver Configuration
+ configure_rx: Wether to configure the Rx according to the config file. If set to `false`, the Rx has to be configured via the web interface and the settings must be saved. On the driver side communication has to set accordingly to serial, TCP or UDP (TCP and UDP may even be used simultaneously in this case). For TCP communication it is recommended to use a static TCP server (`stream_device.tcp.ip_server` and `stream_device.tcp.port`), since dynamic connections (`device` is tcp) are not guaranteed to have the same id on reconnection. It should also be ensured that obligatory SBF blocks are activated (as of now: ReceiverTime if `use_gnss_time` is set to `true`; `PVTGeodetic`or `PVTCartesian` if latency compensation for PVT related blocks shall be used). Further, if ROS messages compiled from multiple SBF blocks, it should be ensured that all necessary blocks are activated with matching periods, details can be found in section [ROS Topic Publications](#ros-topic-publications). The messages that shall be published still have to be set to `true` in the *NMEA/SBF Messages to be Published* section. Also, parameters concerning the connection and node setup are still relevant (sections: *Connectivity Specs*, *receiver type*, *Frame IDs*, *UTM Zone Locking*, *Time Systems*, *Logger*).
+ default: true
Receiver Type
-
receiver_type
: This parameter is to select the type of the Septentrio receiver-
gnss
for GNSS receivers. -
ins
for INS receivers. - default:
gnss
-
-
multi_antenna
: Whether or not the Rx has multiple antennas.- default:
false
- default:
Frame IDs
-
frame_id
: name of the ROS tf frame for the Rx, placed in the header of published GNSS messages. It corresponds to the frame of the main antenna.- In ROS, the tf package lets you keep track of multiple coordinate frames over time. The frame ID will be resolved by
tf_prefix
if defined. If a ROS message has a header (all of those we publish do), the frame ID can be found viarostopic echo /topic
, where/topic
is the topic into which the message is being published. - default:
gnss
- In ROS, the tf package lets you keep track of multiple coordinate frames over time. The frame ID will be resolved by
-
imu_frame_id
: name of the ROS tf frame for the IMU, placed in the header of published IMU message- default:
imu
- default:
-
poi_frame_id
: name of the ROS tf frame for the POI, placed in the child frame_id of localization ifins_use_poi
is set totrue
.- default:
base_link
- default:
-
vsm_frame_id
: name of the ROS tf frame for the velocity sensor.- default:
vsm
- default:
-
aux1_frame_id
: name of the ROS tf frame for the aux1 antenna.- default:
aux1
- default:
-
vehicle_frame_id
: name of the ROS tf frame for the vehicle. Default is the same aspoi_frame_id
but may be set otherwise.- default:
base_link
- default:
-
local_frame_id
: name of the ROS tf frame for the local frame.- default:
odom
- default:
-
insert_local_frame
: Wether to insert a local frame to published tf according to ROS REP 105. The transform from the local frame specified bylocal_frame_id
to the vehicle frame specified byvehicle_frame_id
has to be provided, e.g. by odometry. Insertion of the local frame means the transform between local frame and global frame is published instead of transform between vehicle frame and global frame.- default:
false
- default:
-
get_spatial_config_from_tf
: wether to get the spatial config via tf with the above mentioned frame ids. This will override spatial settings of the config file. For receiver typeins
withmulti_antenna
set totrue
all frames have to be provided, withmulti_antenna
set tofalse
,aux1_frame_id
is not necessary. For typegnss
with dual-antenna setup onlyframe_id
,aux1_frame_id
, andpoi_frame_id
are needed. For single-antennagnss
no frames are needed. Keep in mind that tf has a tree structure. Thus,poi_frame_id
is the base for all mentioned frames.- default:
false
- default:
-
use_ros_axis_orientation
Wether to use ROS axis orientations according to ROS REP 103 for body related frames and geographic frames. Body frame directions affect INS lever arms and IMU orientation setup parameters. Geographic frame directions affect orientation Euler angles for INS+GNSS and attitude of dual-antenna GNSS. Ifuse_ros_axis_orientation
is set totrue
, the driver converts between the NED convention (Septentrio: yaw = 0 is north, positive clockwise), and ENU convention (ROS: yaw = 0 is east, positive counterclockwise). There is no conversion when setting this parameter tofalse
and the angles will be consistent with the web GUI in this case.- If set to
false
Septentrios definition is used, i.e., front-right-down body related frames and NED (north-east-down) for orientation frames. - If set to
true
ROS definition is used, i.e., front-left-up body related frames and ENU (east-north-up) for orientation frames. - default:
true
- If set to
UTM zone locking
+ lock_utm_zone
: wether the UTM zone of the initial localization is locked, i.e., this zone is kept even if a zone transition would occur.
+ default: true
Datum
-
datum
: With this command, the datum the coordinates should refer to is selected. With setting it toDefault
, the datum depends on the positioning mode, e.g.WGS84
for standalone positioning.- Since the standardized GGA message does only provide the orthometric height (= MSL height = distance from Earth's surface to geoid) and the geoid undulation (distance from geoid to ellipsoid) for which non-WGS84 datums cannot be specified, it does not affect the GGA message.
- default:
Default
POI-ARP Offset
+ `poi_to_arp`: offsets of the main GNSS antenna reference point (ARP) with respect to the point of interest (POI = marker). Use for static receivers only.
+ The parameters `delta_e`, `delta_n` and `delta_u` are the offsets in the East, North and Up (ENU) directions respectively, expressed in meters.
+ All absolute positions reported by the receiver are POI positions, obtained by subtracting this offset from the ARP. The purpose is to take into account the fact that the antenna may not be located directly on the surveying POI.
+ default: `0.0`, `0.0` and `0.0`
Antenna Attitude Offset
+ `att_offset`: Angular offset between two antennas (Main and Aux) and vehicle frame
+ `heading`: The perpendicular (azimuth) axis can be compensated for by adjusting the `heading` parameter
+ `pitch`: Vertical (elevation) offset can be compensated for by adjusting the `pitch` parameter
+ default: `0.0`, `0.0` (degrees)
Antenna Specs
-
ant_type
: type of your main GNSS antenna- For best positional accuracy, it is recommended to select a type from the list returned by the command
lstAntennaInfo, Overview
. This is the list of antennas for which the receiver can compensate for phase center variation. - By default and if
ant_type
does not match any entry in the list returned bylstAntennaInfo, Overview
, the receiver will assume that the phase center variation is zero at all elevations and frequency bands, and the position will not be as accurate. - default:
Unknown
- For best positional accuracy, it is recommended to select a type from the list returned by the command
-
ant_serial_nr
: serial number of your main GNSS antenna -
ant_aux1_type
andant_aux1_serial_nr
: same for Aux1 antenna
Leap Seconds
-
leap_seconds
: Leap seconds are automatically gathered from the receiver via the SBF blockReceiverTime
. If a log file is used for simulation and this block was not recorded, the number of leap seconds that have been inserted up until the point of ROSaic usage can be set by this parameter.- At the time of writing the code (2020), the GPS time, which is unaffected by leap seconds, was ahead of UTC time by 18 leap seconds. Adapt the
leap_seconds
parameter accordingly as soon as the next leap second is inserted into the UTC time or in case you are using ROSaic for the purpose of simulations.
- At the time of writing the code (2020), the GPS time, which is unaffected by leap seconds, was ahead of UTC time by 18 leap seconds. Adapt the
Polling Periods
-
polling_period.pvt
: desired period in milliseconds between the polling of two consecutivePVTGeodetic
,PosCovGeodetic
,PVTCartesian
andPosCovCartesian
blocks and - if published - between the publishing of two of the corresponding ROS messages (e.g.septentrio_gnss_driver/PVTGeodetic.msg
). Consult firmware manual for allowed periods. If the period is set to a lower value than the receiver is capable of, it will be published with the next higher period. If set to0
, the SBF blocks are output at their natural renewal rate (OnChange
).- Clearly, the publishing of composite ROS messages such as
sensor_msgs/NavSatFix.msg
orgps_msgs/GPSFix.msg
is triggered by the SBF block that arrives last among the blocks of the current epoch. - default:
500
(2 Hz)
- Clearly, the publishing of composite ROS messages such as
-
polling_period.rest
: desired period in milliseconds between the polling of all other SBF blocks and NMEA sentences not addressed by the previous parameter, and - if published - between the publishing of all other ROS messages- default:
500
(2 Hz)
- default:
Time Systems
-
use_gnss_time
:true
if the ROS message headers' unix epoch time field shall be constructed from the TOW/WNC (in the SBF case) and UTC (in the NMEA case) data,false
if those times shall be taken by the driver from ROS time. Ifuse_gnss_time
is set totrue
, it is imperative that the ROS system is synchronized to an NTP time server or PTP clock either via internet or ideally via the Septentrio receiver since the latter serves as a Stratum 1 time server not dependent on an internet connection. If this is not followed, the time stamps may drift apart!- default:
false
- default:
-
ntp_server
: Wether the NTP server shall be activated.- default:
false
- default:
-
ptp_server_clock
: Wether the PTP server slcok hall be activated.- default:
false
- default:
-
latency_compensation
: Rx reports processing latency in PVT and INS blocks. If set totrue
this latency is subtracted from ROS timestamps in related blocks (i.e.,use_gnss_time
set tofalse
). Related blocks are INS, PVT, Covariances, and BaseVectors. In case ofuse_gnss_time
set totrue
, the latency is already compensated within the RX and included in the reported timestamps.- default:
false
- default:
RTK corrections
-
rtk_settings
: determines RTK connection parameters- There are multiple possibilities to feed RTK corrections to the Rx. They may be set simultaneously and the Rx will choose the nearest source.
- a)
ntrip_#
if the Rx has internet access and is able to receieve NTRIP streams from a caster. Up to three NTRIP connections are possible. - b)
ip_server_#
if corrections are to be receieved via TCP/IP for example overData Link
from Septentrio's RxTools is installed on a computer. Up to five IP server connections are possible. - c)
serial_#
if corrections are to be receieved via a serial port for example over radio link from a local RTK base or overData Link
from Septentrio's RxTools installed on a computer. Up to five serial connections are possible.
- a)
-
ntrip_#
: for receiving corretions from an NTRIP caster (#
is from 1 ... 3).-
id
: NTRIP connectionNTR1
,NTR2
, orNTR3
. - default: ""
-
caster
: is the hostname or IP address of the NTRIP caster to connect to. - default: ""
-
caster_port
: IP port of the NTRIP caster. - default: 2021
-
username
: user name for the NTRIP caster. - default: ""
-
pasword
: password for the NTRIP caster. The receiver encrypts the password so that it cannot be read back with the command "getNtripSettings". - default: ""
-
mountpoint
: mount point of the NTRP caster to be used. - default: ""
-
version
: argument specifies which version of the NTRIP protocol to use (v1
orv2
). - default: "v2"
-
tls
: determines wether to use TLS. - default: false
-
fingerprint
: fingerprint to be used if the certificate is self-signed. If the caster’s certificate is known by a publicly-trusted certification authority, fingerprint should be left empty. - default: ""
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: "auto"
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver automatically sends GGA messages if requested by the caster. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
-
ip_server_#
: for receiving corretions via TCP/IP (#
is from 1 ... 5).-
id
: specifies the IP serverIPS1
,IPS2
,IPS3
,IPS4
, orIPS5
. Note that ROSaic will send GGA messages on this connection ifsend_gga
is set, such that in theData Link
application ofRxTools
one just needs to set up a TCP client to the host name as found in the ROSaic parameterdevice
with the port as found inport
. If the latter connection were connection 1 onData Link
, then connection 2 would set up an NTRIP client connecting to the NTRIP caster as specified in the above parameters in order to forward the corrections from connection 2 to connection 1. - default: ""
-
port
: its port number of the connection that ROSaic establishes on the receiver. When selecting a port number, make sure to avoid conflicts with other services. - default: 0
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: ""
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver sends withsec1
. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
-
serial_#
: for receiving corretions via serial connection (#
is from 1 ... 5).-
port
: Serial connectionCOM1
,COM2
,COM3
,USB1
, orUSB2
on which corrections could be forwarded to the Rx from a serially connected radio link modem or viaData Link
for example. - default: ""
-
baud_rate
: sets the baud rate of this port for genuine serial ports, i.e., not relevant for USB connection. - default: 115200
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: "auto"
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver sends withsec1
. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
- There are multiple possibilities to feed RTK corrections to the Rx. They may be set simultaneously and the Rx will choose the nearest source.
INS Specs
+ `ins_spatial_config`: Spatial configuration of INS/IMU. Coordinates according to vehicle related frame directions chosen by `use_ros_axis_orientation` (front-left-up if `true` and front-right-down if `false`).
+ `imu_orientation`: IMU sensor orientation
+ Parameters `theta_x`, `theta_y` and `theta_z` are used to determine the sensor orientation with respect to the vehicle frame. Positive angles correspond to a right-handed (clockwise) rotation of the IMU with respect to its nominal orientation (see below). The order of the rotations is as follows: `theta_z` first, then `theta_y`, then `theta_x`.
+ The nominal orientation is where the IMU is upside down and with the `X axis` marked on the receiver pointing to the front of the vehicle. By contrast, for `use_ros_axis_orientation: true`, nominal orientation is where the `Z axis` of the IMU is pointing upwards and also with the `X axis` marked on the receiver pointing to the front of the vehicle.
+ default: `0.0`, `0.0`, `0.0` (degrees)
+ `poi_lever_arm`: The lever arm from the IMU reference point to a user-defined POI
+ Parameters `delta_x`,`delta_y` and `delta_z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `ant_lever_arm`: The lever arm from the IMU reference point to the main GNSS antenna
+ The parameters `x`,`y` and `z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `vsm_lever_arm`: The lever arm from the IMU reference point to the velocity sensor
+ The parameters `vsm_x`,`vsm_y` and `vsm_z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `ins_initial_heading`: How the receiver obtains the initial INS/GNSS integrated heading during the alignment phase
+ In case it is `auto`, the initial integrated heading is determined from GNSS measurements.
+ In case it is `stored`, the last known heading when the vehicle stopped before switching off the receiver is used as initial heading. Use if vehicle does not move when the receiver is switched off.
+ default: `auto`
+ `ins_std_dev_mask`: Maximum accepted error
+ `att_std_dev`: Configures an output limit on standard deviation of the attitude angles (max error accepted: 5 degrees)
+ `pos_std_dev`: Configures an output limit on standard deviation of the position (max error accepted: 100 meters)
+ default: `5` degrees, `10` meters
+ `ins_use_poi`: Whether or not to use the POI defined in `ins_spatial_config.poi_lever_arm`
+ If true, the point at which the INS navigation solution (e.g. in `insnavgeod` ROS topic) is calculated will be the POI as defined above (`poi_frame_id`), otherwise it'll be the main GNSS antenna (`frame_id`). Has to be set to `true` if tf shall be published.
+ default: `true`
+ `ins_vsm`: Configuration of the velocity sensor measurements. IP server may be used to receive velocity information from ROS or from an external device. Serial connection may be used to receive velocity information from an external device only.
+ `ros`: VSM info received from ROS msgs
+ `source`: Specifies which ROS message type shall be used, options are `odometry` or `twist`. Accordingly, a subscriber is established of the type [`nav_msgs/Odometry.msg`](https://docs.ros2.org/foxy/api/nav_msgs/msg/Odometry.html) or [`geometry_msgs/TwistWithCovarianceStamped.msg`](https://docs.ros2.org/foxy/api/geometry_msgs/msg/TwistWithCovarianceStamped.html) listening on the topics `odometry_vsm` or `twist_vsm` respectively. Only linear velocities are evaluated. Measurements have to be with respect to the frame aligned with the vehicle and defined by `ins_spatial_config.vsm_lever_arm` or tf-frame `vsm_frame_id`, see also comment in [`nav_msgs/Odometry.msg`](https://docs.ros2.org/foxy/api/nav_msgs/msg/Odometry.html) that twist should be specified in `child_frame_id`.
+ default: ""
+ `config`: Defines which measurements belonging to the respective axes are forwarded to the INS. In addition, non-holonomic constraints may be introduced for directions known to be restricted in movement. For example, a vehicle with Ackermann steering is limited in its sidewards and upwards movement. So, even if only motion in x-direction may be measured, zero-velocities for y and z may be sent. Only has to be set if `ins_vsm.ros.source`is set to `odometry` or `twist`.
+ default: []
+ `variances_by_parameter`: Wether variances shall be entered by parameter `ins_vsm.ros.variances` or the values from inside the ROS messages are used. Only has to be set if `ins_vsm.source`is set to `odometry` or `twist`.
+ default: false
+ `variances`: Variances of the respective axes. Only have to be set if `ins_vsm.variances_by_parameter` is set to `true`. Values must be > 0.0, else measurements cannot not be used.
+ default: []
+ `ip_server`:
+ `id`: IP server to receive the VSM info (e.g. `IPS1`). If a TCP stream device (`device.stream_device.tcp`) is set up, this device may be used here, i.e, `id` my be set to the same.
+ default: "IPS5"
+ `port`: TCP port to receive the VSM info. When selecting a port number, make sure to avoid conflicts with other services.
+ default: 24786
+ `keep_open` determines wether this connections to receive VSM shall be kept open on driver shutdown. If set to `true` the Rx will still be able to use external VSM info to improve its localization.
+ default: `true`
+ `serial`:
+ `port`: Serial port to receive the VSM info.
+ default: ""
+ `baud_rate`: Baud rate of the serial port to receive the VSM info.
+ default: 115200
+ `keep_open` determines wether this connections to receive VSM shall be kept open on driver shutdown. If set to `true` the Rx will still be able to use external VSM info to improve its localization.
+ default: `true`
Logger
+ `activate_debug_log`: `true` if ROS logger level shall be set to debug.
-
Parameters Configuring (Non-)Publishing of ROS Messages
NMEA/SBF Messages to be Published
-
publish.auto_publish
:true
to automatically publish messages for which SBF blocks and NMEA sentences are available. Only applicable ifconigure_rx
isfalse
. Iftf_ecef
shall be published, this must be explicitily set to true, else tf in UTM is published if available. -
publish.publish_only_valid
:true
to publish SBF blocks only if timestamp (TOW) is valid. -
publish.gpgga
:true
to publishnmea_msgs/GPGGA.msg
messages into the topic/gpgga
-
publish.gprmc
:true
to publishnmea_msgs/GPRMC.msg
messages into the topic/gprmc
-
publish.gpgsa
:true
to publishnmea_msgs/GPGSA.msg
messages into the topic/gpgsa
-
publish.gpgsv
:true
to publishnmea_msgs/GPGSV.msg
messages into the topic/gpgsv
-
publish.measepoch
:true
to publishseptentrio_gnss_driver/MeasEpoch.msg
messages into the topic/measepoch
-
publish.galauthstatus
:true
to publishseptentrio_gnss_driver/GALAuthStatus.msg
messages into the topic/galauthstatus
and corresponding/diganostics
-
publish.aimplusstatus
:true
to publishseptentrio_gnss_driver/RFStatus.msg
messages into the topic/rfstatus
,septentrio_gnss_driver/AIMPlusStatus.msg
messages into/aimplusstatus
and corresponding/diganostics
. Some information is only available with active OSNMA. -
publish.pvtcartesian
:true
to publishseptentrio_gnss_driver/PVTCartesian.msg
messages into the topic/pvtcartesian
-
publish.pvtgeodetic
:true
to publishseptentrio_gnss_driver/PVTGeodetic.msg
messages into the topic/pvtgeodetic
-
publish.basevectorcart
:true
to publishseptentrio_gnss_driver/BaseVectorCart.msg
messages into the topic/basevectorcart
-
publish.basevectorgeod
:true
to publishseptentrio_gnss_driver/BaseVectorGeod.msg
messages into the topic/basevectorgeod
-
publish.poscovcartesian
:true
to publishseptentrio_gnss_driver/PosCovCartesian.msg
messages into the topic/poscovcartesian
-
publish.poscovgeodetic
:true
to publishseptentrio_gnss_driver/PosCovGeodetic.msg
messages into the topic/poscovgeodetic
-
publish.velcovcartesian
:true
to publishseptentrio_gnss_driver/VelCovCartesian.msg
messages into the topic/velcovcartesian
-
publish.velcovgeodetic
:true
to publishseptentrio_gnss_driver/VelCovGeodetic.msg
messages into the topic/velcovgeodetic
-
publish.atteuler
:true
to publishseptentrio_gnss_driver/AttEuler.msg
messages into the topic/atteuler
-
publish.attcoveuler
:true
to publishseptentrio_gnss_driver/AttCovEuler.msg
messages into the topic/attcoveuler
-
publish.gpst
:true
to publishsensor_msgs/TimeReference.msg
messages into the topic/gpst
-
publish.navsatfix
:true
to publishsensor_msgs/NavSatFix.msg
messages into the topic/navsatfix
-
publish.gpsfix
:true
to publishgps_msgs/GPSFix.msg
messages into the topic/gpsfix
-
publish.pose
:true
to publishgeometry_msgs/PoseWithCovarianceStamped.msg
messages into the topic/pose
-
publish.twist
:true
to publishgeometry_msgs/TwistWithCovarianceStamped.msg
messages into the topics/twist
and/twist_ins
respectively -
publish.diagnostics
:true
to publishdiagnostic_msgs/DiagnosticArray.msg
messages into the topic/diagnostics
-
publish.insnavcart
:true
to publishseptentrio_gnss_driver/INSNavCart.msg
message into the topic/insnavcart
-
publish.insnavgeod
:true
to publishseptentrio_gnss_driver/INSNavGeod.msg
message into the topic/insnavgeod
-
publish.extsensormeas
:true
to publishseptentrio_gnss_driver/ExtSensorMeas.msg
message into the topic/extsensormeas
-
publish.imusetup
:true
to publishseptentrio_gnss_driver/IMUSetup.msg
message into the topic/imusetup
-
publish.velsensorsetup
:true
to publishseptentrio_gnss_driver/VelSensorSetup.msgs
message into the topic/velsensorsetup
-
publish.exteventinsnavcart
:true
to publishseptentrio_gnss_driver/ExtEventINSNavCart.msgs
message into the topic/exteventinsnavcart
-
publish.exteventinsnavgeod
:true
to publishseptentrio_gnss_driver/ExtEventINSNavGeod.msgs
message into the topic/exteventinsnavgeod
-
publish.imu
:true
to publishsensor_msgs/Imu.msg
message into the topic/imu
-
publish.localization
:true
to publishnav_msgs/Odometry.msg
message into the topic/localization
-
publish.tf
:true
to broadcast tf of localization.ins_use_poi
must also be set to true to publish tf. Note that only one ofpublish.tf
orpublish.tf_ecef
may betrue
.
-
publish.localization_ecef
:true
to publishnav_msgs/Odometry.msg
message into the topic/localization
related to ECEF frame. -
publish.tf_ecef
:true
to broadcast tf of localization related to ECEF frame.ins_use_poi
must also be set to true to publish tf. Note that only one ofpublish.tf
orpublish.tf_ecef
may betrue
.
-
ROS Topic Publications
A selection of NMEA sentences, the majority being standardized sentences, and proprietary SBF blocks is translated into ROS messages, partly generic and partly custom, and can be published at the discretion of the user into the following ROS topics. All published ROS messages, even custom ones, start with a ROS generic header std_msgs/Header.msg
, which includes the receiver time stamp as well as the frame ID, the latter being specified in the ROS parameter frame_id
.
Available ROS Topics
-
/gpgga
: publishesnmea_msgs/Gpgga.msg
- converted from the NMEA sentence GGA. -
/gprmc
: publishesnmea_msgs/Gprmc.msg
- converted from the NMEA sentence RMC. -
/gpgsa
: publishesnmea_msgs/Gpgsa.msg
- converted from the NMEA sentence GSA. -
/gpgsv
: publishesnmea_msgs/Gpgsv.msg
- converted from the NMEA sentence GSV. -
/measepoch
: publishes custom ROS messageseptentrio_gnss_driver/MeasEpoch.msg
, corresponding to the SBF blockMeasEpoch
.
-
/galauthstatus
: publishes custom ROS messageseptentrio_gnss_driver/GALAuthStatus.msg
, corresponding to the SBF blockGALAuthStatus
. -
/rfstatus
: publishes custom ROS messageseptentrio_gnss_driver/RFStatus.msg
, compiled from the SBF blockRFStatus
. -
/aimplusstatus
: publishes custom ROS messageseptentrio_gnss_driver/AIMPlusStatus.msg
, reporting status of AIM+. Converted from SBF blocksRFStatus
and optionallyGALAuthStatus
. For the latter OSNMA has to be activated. -
/pvtcartesian
: publishes custom ROS messageseptentrio_gnss_driver/PVTCartesian.msg
, corresponding to the SBF blockPVTCartesian
(GNSS case) orINSNavGeod
(INS case). -
/pvtgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/PVTGeodetic.msg
, corresponding to the SBF blockPVTGeodetic
(GNSS case) orINSNavGeod
(INS case). -
/basevectorcart
: publishes custom ROS messageseptentrio_gnss_driver/BaseVectorCart.msg
, corresponding to the SBF blockBaseVectorCart
. -
/basevectorgeod
: publishes custom ROS messageseptentrio_gnss_driver/BaseVectorGeod.msg
, corresponding to the SBF blockBaseVectorGeod
. -
/poscovcartesian
: publishes custom ROS messageseptentrio_gnss_driver/PosCovCartesian.msg
, corresponding to SBF blockPosCovCartesian
(GNSS case) orINSNavGeod
(INS case). -
/poscovgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/PosCovGeodetic.msg
, corresponding to SBF blockPosCovGeodetic
(GNSS case) orINSNavGeod
(INS case). -
/velcovcartesian
: publishes custom ROS messageseptentrio_gnss_driver/VelCovCartesian.msg
, corresponding to SBF blockVelCovCartesian
(GNSS case). -
/velcovgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/VelCovGeodetic.msg
, corresponding to SBF blockVelCovGeodetic
(GNSS case). -
/atteuler
: publishes custom ROS messageseptentrio_gnss_driver/AttEuler.msg
, corresponding to SBF blockAttEuler
. -
/attcoveuler
: publishes custom ROS messageseptentrio_gnss_driver/AttCovEuler.msg
, corresponding to the SBF blockAttCovEuler
. -
/gpst
(for GPS Time): publishes generic ROS messagesensor_msgs/TimeReference.msg
, converted from thePVTGeodetic
(GNSS case) orINSNavGeod
(INS case) block's GPS time information, stored in its block header. -
/navsatfix
: publishes generic ROS messagesensor_msgs/NavSatFix.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
(GNSS case) orINSNavGeod
(INS case)- The ROS message
sensor_msgs/NavSatFix.msg
can be fed directly into thenavsat_transform_node
of the ROS navigation stack.
- The ROS message
-
/gpsfix
: publishes generic ROS messagegps_msgs/GPSFix.msg
, which is much more detailed thansensor_msgs/NavSatFix.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
,ChannelStatus
,MeasEpoch
,AttEuler
,AttCovEuler
,VelCovGeodetic
,DOP
(GNSS case) orINSNavGeod
,ChannelStatus
,MeasEpoch
,DOP
(INS case). In order to publish heading information, the field dip is diverted from its intended meaning an populated with the heading angle and err_dip with its uncertainty.- INS case: Beware, in order to allow a high update rate,
ChannelStatus
,MeasEpoch
, andDOP
are not time aligned, i.e., they might contain outdated information.
- INS case: Beware, in order to allow a high update rate,
-
/pose
: publishes generic ROS messagegeometry_msgs/PoseWithCovarianceStamped.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
,AttEuler
,AttCovEuler
(GNSS case) orINSNavGeod
(INS case).- Note that GNSS provides absolute positioning, while robots are often localized within a local level cartesian frame. The pose field of this ROS message contains position with respect to the absolute ENU frame (longitude, latitude, height), i.e. not a cartesian frame, while the orientation is with respect to a vehicle-fixed (e.g. for mosaic-x5 in moving base mode via the command
setAttitudeOffset
, ...) !local! NED frame or ENU frame ifuse_ros_axis_directions
is settrue
. Thus the orientation is !not! given with respect to the same frame as the position is given in. The cross-covariances are hence set to 0.
- Note that GNSS provides absolute positioning, while robots are often localized within a local level cartesian frame. The pose field of this ROS message contains position with respect to the absolute ENU frame (longitude, latitude, height), i.e. not a cartesian frame, while the orientation is with respect to a vehicle-fixed (e.g. for mosaic-x5 in moving base mode via the command
-
/twist
: publishes generic ROS messagegeometry_msgs/TwistWithCovarianceStamped.msg
, converted from the SBF blocksPVTGeodetic
andVelCovGeodetic
. -
/twist_ins
: publishes generic ROS messagegeometry_msgs/TwistWithCovarianceStamped.msg
, converted from SBF blockINSNavGeod
. -
/insnavcart
: publishes custom ROS messageseptentrio_gnss_driver/INSNavCart.msg
, corresponding to SBF blockINSNavCart
-
/insnavgeod
: publishes custom ROS messageseptentrio_gnss_driver/INSNavGeod.msg
, corresponding to SBF blockINSNavGeod
-
/extsensormeas
: publishes custom ROS messageseptentrio_gnss_driver/ExtSensorMeas.msg
, corresponding to SBF blockExtSensorMeas
. -
/imusetup
: publishes custom ROS messageseptentrio_gnss_driver/IMUSetup.msg
, corresponding to SBF blockIMUSetup
. -
/velsensorsetup
: publishes custom ROS messageseptentrio_gnss_driver/VelSensorSetup.msg
corresponding to SBF blockVelSensorSetup
. -
/exteventinsnavcart
: publishes custom ROS messageseptentrio_gnss_driver/INSNavCart.msg
, corresponding to SBF blockExtEventINSNavCart
. -
/exteventinsnavgeod
: publishes custom ROS messageseptentrio_gnss_driver/INSNavGeod.msg
, corresponding to SBF blockExtEventINSNavGeod
. -
/diagnostics
: accepts generic ROS messagediagnostic_msgs/DiagnosticArray.msg
, converted from the SBF blocksQualityInd
,ReceiverStatus
andReceiverSetup
-
/imu
: accepts generic ROS messagesensor_msgs/Imu.msg
, converted from the SBF blocksExtSensorMeas
andINSNavGeod
.- The ROS message
sensor_msgs/Imu.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
-
/localization
: accepts generic ROS messagenav_msgs/Odometry.msg
, converted from the SBF blockINSNavGeod
and transformed to UTM.- The ROS message
nav_msgs/Odometry.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
-
/localization_ecef
: accepts generic ROS messagenav_msgs/Odometry.msg
, converted from the SBF blocksINSNavCart
andINSNavGeod
.- The ROS message
nav_msgs/Odometry.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
Suggestions for Improvements
Some Ideas
+ Equip ROSaic with an NTRIP client such that it can forward corrections to the receiver independently of `Data Link`.Adding New SBF Blocks or NMEA Sentences
Steps to Follow
Is there an SBF or NMEA message that is not being addressed while being important to your application? If yes, follow these steps: 1. Find the log reference of interest in the publicly accessible, official documentation. Hence select the reference guide file, e.g. for mosaic-x5 in the [product support section for mosaic-X5](https://www.septentrio.com/en/support/mosaic/mosaic-x5), Chapter 4, of Septentrio's homepage. 2. SBF: Add a new `.msg` file to the `../msg` folder. And modify the `../CMakeLists.txt` file by adding a new entry to the `add_message_files` section. 3. Add msg header and typedef to `typedefs.hpp`. 4. Parsers: - SBF: Add a parser to the `sbf_blocks.hpp` file. - NMEA: Construct two new parsing files such as `gpgga.cpp` to the `../src/septentrio_gnss_driver/parsers/nmea_parsers` folder and one such as `gpgga.hpp` to the `../include/septentrio_gnss_driver/parsers/nmea_parsers` folder. 5. Processing the message/block: - SBF: Extend the `SbfId` enumeration in the `message_handler.hpp` file with a new entry. - SBF: Extend the SBF switch-case in `message_handler.cpp` file with a new case. - NMEA: Extend the `nmeaMap_` in the `message_handler.hpp` file with a new pair. - NMEA: Extend the NMEA switch-case in `message_handler.cpp` file with a new case. 6. Create a new `publish/..` ROSaic parameter in the `../config/rover.yaml` file and create a boolean variable `publish_xxx` in the struct in the `settings.h` file. Parse the parameter in the `rosaic_node.cpp` file. 7. Add SBF block or NMEA to data stream setup in `communication_core.cpp` (function `configureRx()`).CONTRIBUTING
Repository Summary
Checkout URI | https://github.com/septentrio-gnss/septentrio_gnss_driver.git |
VCS Type | git |
VCS Version | master |
Last Updated | 2024-08-04 |
Dev Status | MAINTAINED |
CI status | No Continuous Integration |
Released | RELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Packages
Name | Version |
---|---|
septentrio_gnss_driver | 1.4.1 |
README
ROSaic = ROS + mosaic
Overview
This repository hosts drivers for ROS 1 (Melodic and Noetic) and ROS 2 (Foxy, Galactic, Humble, Iron, Rolling, and beyond) - written in C++ - that work with mosaic and AsteRx - two of Septentrio's cutting-edge GNSS and GNSS/INS receiver families - and beyond. Both ROS 1 and ROS 2 are supported within one repository.
Main Features:
- Supports Septentrio's single antenna GNSS, dual antenna GNSS and INS receivers
- Supports serial, TCP/IP and USB connections, the latter being compatible with both serial (RNDIS) and TCP/IP protocols
- Supports several ASCII (including key NMEA ones) messages and SBF (Septentrio Binary Format) blocks
- Reports status of AIM+ (Advanced Interference Mitigation including OSNMA) anti-jamming and anti-spoofing.
- Can publish nav_msgs/Odometry
message for INS receivers
- Can blend SBF blocks PVTGeodetic
, PosCovGeodetic
, ChannelStatus
, MeasEpoch
, AttEuler
, AttCovEuler
, VelCovGeodetic
and DOP
in order to publish gps_common/GPSFix
and sensor_msgs/NavSatFix
messages
- Supports optional axis convention conversion since Septentrio follows the NED convention, whereas ROS is ENU.
- Easy configuration of multiple RTK corrections simultaneously (via NTRIP, TCP/IP stream, or serial)
- Can play back PCAP capture logs for testing purposes
- Tested with the mosaic-X5, mosaic-H, AsteRx-m3 Pro+, AsteRx-SB Pro+ and the AsteRx-SBi3 Pro receiver
- Easy to add support for more log types
Please let the maintainers know of your success or failure in using the driver with other devices so we can update this page appropriately.
Usage
Important notes
Notes Before Usage
+ The driver assumes that our anonymous access to the Rx grants us full control rights. This should be the case by default, and can otherwise be changed with the `setDefaultAccessLevel` command. If user control is in place user credentials can be given by parameters `login.user` and `login.password`. + Note for serial connection: Make sure the user is part of the `dialout` group to have full access to the serial ports. If not, add it for example with `sudo adduser [username] dialout`. + Note for setting hw_flow_control: This is a string parameter, setting it to off without quotes leads to the fact that it is not read in correctly. + Note for setting ant_(aux1)_serial_nr: This is a string parameter, numeric only serial numbers should be put in quotes. If this is not done a warning will be issued and the driver tries to parse it as integer. + Note for usage of NTRIP via USB with virtual ethernet (RNDIS): RNDIS provides a virtual network connection only between the receiver and the PC. First outgoing network access via USB has to be activated, which is explained [here](https://www.youtube.com/watch?v=bUt8cL9Ue1Y). Next setup internet sharing under Linux by setting the connection of the virtual network interface (the name should be something like enx1a3202991545) to "Shared to other computers". + Once the build or binary installation is finished, adapt the `config/rover.yaml` file according to your needs or assemble a new one, examples for GNSS specific parameters `config/gnss.yaml` and INS `config/ins.yaml` are also available. Specify the communication parameters, the ROS messages to be published, the frequency at which the latter should happen etc.ROS 1: Launch the `launch/rover.launch` to use `rover.yaml` or add `param_file_name:=xxx` to use a custom config.
ROS 2: Launch as composition with `ros2 launch septentrio_gnss_driver rover.launch.py` to use `rover.yaml` or add `file_name:=xxx.yaml` to use a custom config. Alternatively launch as node with `ros2 launch septentrio_gnss_driver rover_node.launch.py` to use `rover_node.yaml` or add `file_name:=xxx.yaml` to use a custom config. Specify the communication parameters, the ROS messages to be published, the frequency at which the latter should happen etc. + Besides the aforementioned config file `rover.yaml` containing all parameters, specialized launch files for GNSS `config/gnss.yaml` and INS `config/ins.yaml` respectively contain only the relevant parameters in each case. - NOTE: Unless `configure_rx` is set to `false`, this driver will overwrite the previous values of the parameters, even if the value is left to zero in the "yaml" file. + The driver was developed and tested with firmware versions >= 4.10.0 for GNSS and >= 1.3.2 for INS. Receivers with older firmware versions are supported but some features may not be available. Known limitations are: * GNSS with firmware < 4.10.0 does not support IP over USB. * GNSS with firmware < 4.12.1 does not support OSNMA. * GNSS with firmware < 4.14 does not support PTP server clock. * INS with firmware <= 1.2.0 does not support velocity aiding. * INS with firmware <= 1.2.0 does not support setting of initial heading. * INS with firmware < 1.3.2 does not support NTP. * INS with firmware < 1.4 does not support OSNMA. * INS with firmware < 1.4.1 does not support improved VSM handling allowing for unknown variances. * INS does not support PTP server clock as of now. + Known issues: * UDP over USB: Blocks are sent twice on GNSS with firmware <= 4.12.1 and INS with firmware <= 1.4. For GNSS it is fixed in version 4.14 (released on June 15th 2023), for INS is fixed in 1.4.1 (released November 2023). + If `use_ros_axis_orientation` to `true` axis orientations are converted by the driver between NED (Septentrio: yaw = 0 is north, positive clockwise) and ENU (ROS: yaw = 0 is east, positive counterclockwise). There is no conversion when setting this parameter to `false` and the angles will be consistent with the web GUI in this case. :
``` # Example configuration Settings for the Rover Rx device: tcp://192.168.3.1:28784 serial: baudrate: 921600 hw_flow_control: "off" stream_device: tcp: ip_server: "" port: 0 udp: ip_server: "" port: 0 unicast_ip: "" configure_rx: true custom_commands_file: "" login: user: "" password: "" osnma: mode: "off" ntp_server: "" keep_open: true frame_id: gnss imu_frame_id: imu poi_frame_id: base_link vsm_frame_id: vsm aux1_frame_id: aux1 vehicle_frame_id: base_link insert_local_frame: false local_frame_id: odom get_spatial_config_from_tf: true lock_utm_zone: true use_ros_axis_orientation: true receiver_type: gnss datum: Default poi_to_arp: delta_e: 0.0 delta_n: 0.0 delta_u: 0.0 att_offset: heading: 0.0 pitch: 0.0 ant_type: Unknown ant_aux1_type: Unknown ant_serial_nr: Unknown ant_aux1_serial_nr: Unknown leap_seconds: 18 polling_period: pvt: 500 rest: 500 use_gnss_time: false ntp_server: false ptp_server_clock: false latency_compensation: false rtk_settings: ntrip_1: id: "NTR1" caster: "1.2.3.4" caster_port: 2101 username: "Asterix" password: "password" mountpoint: "mtpt1" version: "v2" tls: true fingerprint: "AA:BB:56:78:90:12: ... 78:90:12:34" rtk_standard: "RTCMv3" send_gga: "auto" keep_open: true ntrip_2: id: "NTR3" caster: "5.6.7.8" caster_port: 2101 username: "Obelix" password: "password" mountpoint: "mtpt2" version: "v2" tls: false fingerprint: "" rtk_standard: "RTCMv2" send_gga: "auto" keep_open: true ip_server_1: id: "IPS3" port: 28785 rtk_standard: "RTCMv2" send_gga: "auto" keep_open: true ip_server_2: id: "IPS5" port: 28786 rtk_standard: "CMRv2" send_gga: "auto" keep_open: true serial_1: port: "COM1" baud_rate: 230400 rtk_standard: "auto" send_gga: "sec1" keep_open: true serial_2: port: "COM2" baud_rate: 230400 rtk_standard: "auto" send_gga: "off" keep_open: true publish: # For both GNSS and INS Rxs auto_publish: false publish_only_valid: false navsatfix: false gpsfix: true gpgga: false gprmc: false gpst: false measepoch: false pvtcartesian: false pvtgeodetic: true basevectorcart: false basevectorgeod: false poscovcartesian: false poscovgeodetic: true velcovcartesian: false velcovgeodetic: false atteuler: true attcoveuler: true pose: false twist: false diagnostics: false aimplusstatus: true galauthstatus: false # For GNSS Rx only gpgsa: false gpgsv: false # For INS Rx only insnavcart: false insnavgeod: false extsensormeas: false imusetup: false velsensorsetup: false exteventinsnavcart: false exteventinsnavgeod: false imu: false localization: false tf: false localization_ecef: false tf_ecef: false # INS-Specific Parameters ins_spatial_config: imu_orientation: theta_x: 0.0 theta_y: 0.0 theta_z: 0.0 poi_lever_arm: delta_x: 0.0 delta_y: 0.0 delta_z: 0.0 ant_lever_arm: x: 0.0 y: 0.0 z: 0.0 vsm_lever_arm: vsm_x: 0.0 vsm_y: 0.0 vsm_z: 0.0 ins_initial_heading: auto ins_std_dev_mask: att_std_dev: 5.0 pos_std_dev: 10.0 ins_use_poi: true ins_vsm: source: "twist" config: [true, false, false] variances_by_parameter: true variances: [0.1, 0.0, 0.0] ip_server: id: "IPS2" port: 28787 keep_open: true serial: port: "COM3" baud_rate: 115200 keep_open: true # Logger activate_debug_log: false ``` In order to launch ROSaic, the launch command for ROS 1 reads `roslaunch septentrio_gnss_driver rover.launch param_file_name:=rover` and for ROS 2 reads `ros2 launch septentrio_gnss_driver rover.py file_name:=rover.yaml`. If multiple port are utilized for RTK corrections and/or VSM, which shall be closed after driver shutdown (`keep_open: false`), make sure to give the driver enough time to gracefully shutdown as closing the ports takes a few seconds. For ROS 2, this can be accomplished in the launch files by increasing the timeout of SIGTERM (e.g. `sigterm_timeout = '10',`), see example launch files`rover.launch.py`and `rover_node.launch.py` respectively.
Dependencies
ROS
This driver functions on ROS 1 [Melodic](https://wiki.ros.org/melodic/Installation/Ubuntu) and [Noetic](https://wiki.ros.org/noetic/Installation/Ubuntu) or ROS 2 [Foxy](https://docs.ros.org/en/foxy/Installation.html), [Galactic](https://docs.ros.org/en/galactic/Installation.html), [Humble](https://docs.ros.org/en/humble/Installation.html) [Iron](https://docs.ros.org/en/iron/Installation.html), [Jazzy](https://docs.ros.org/en/jazzy/Installation.html), and [Rolling](https://docs.ros.org/en/rolling/Installation.html) (Ubuntu 18.04, 20.04, 22.04, or 24.04 respectively). It is thus necessary to install the ROS version that has been designed for your Linux distro.Binary Install
The binary release is available for ROS 1 (Melodic and Noetic) and ROS 2 (Foxy, Galactic, Humble, Iron, Jazzy, and Rolling). Since Melodic, Foxy, and Galactic are EOL, only Noetic, Humble, Iron, Jazzy, and Rolling will get updated versions. To install the binary package, simply run `sudo apt-get install ros-$ROS_DISTRO-septentrio-gnss-driver`.Build from source
Build
+ Building ROSaic only works from C++17 onwards due to the usage of std::any() etc. #### Dependencies for development Additional ROS packages have to be installed for the NMEA and GPSFix messages.ROS 1: `sudo apt install ros-$ROS_DISTRO-nmea-msgs ros-$ROS_DISTRO-gps-common`.
ROS 2: `sudo apt install ros-$ROS_DISTRO-nmea-msgs ros-$ROS_DISTRO-gps-msgs`.
The serial and TCP/IP communication interface of the ROS driver is established by means of the [Boost C++ library](https://www.boost.org/). In the unlikely event that the below installation instructions fail to install Boost on the fly, please install the Boost libraries via
`sudo apt install libboost-all-dev`.
Conversions from LLA to UTM are incorporated through [GeographicLib](https://geographiclib.sourceforge.io/). Install the necessary headers via
`sudo apt install libgeographic-dev`
or
`sudo apt install libgeographiclib-dev`
since Ubunutu 24.04. respectively.
Compatiblity with PCAP captures are incorporated through [pcap libraries](https://github.com/the-tcpdump-group/libpcap). Install the necessary headers via
`sudo apt install libpcap-dev`.
#### ROS 1 For ROS 1, the package can be built from source using [`catkin_tools`](https://catkin-tools.readthedocs.io/en/latest/installing.html), where the latter can be installed using the command `sudo apt-get install python-catkin-tools` for Melodic or `sudo apt-get install python3-catkin-tools` for Noetic. The typical `catkin_tools` [workflow](https://catkin-tools.readthedocs.io/en/latest/quick_start.html) should suffice: ``` source /opt/ros/${ROS_DISTRO}/setup.bash # In case you do not use the default shell of Ubuntu, you need to source another script, e.g. setup.sh. mkdir -p ~/septentrio/src # Note: Change accordingly depending on where you want your package to be installed. cd ~/septentrio catkin init # Initialize with a hidden marker file catkin config --cmake-args -DCMAKE_BUILD_TYPE=RelWithDebInfo # CMake build types pass compiler-specific flags to your compiler. This type amounts to a release with debug info, while keeping debugging symbols and doing optimization. I.e. for GCC the flags would be -O2, -g and -DNDEBUG. cd src git clone https://github.com/septentrio-gnss/septentrio_gnss_driver rosdep install . --from-paths -i # Might raise "rosaic: Unsupported OS [mint]" warning, if your OS is Linux Mint, since rosdep does not know Mint (and possible other OSes). In that case, add the "--os=ubuntu:saucy" option to "fool" rosdep into believing it faces some Ubuntu version. The syntax is "--os=OS_NAME:OS_VERSION". catkin build # If catkin cannot find empty, tell catkin to use Python 3 by adding "-DPYTHON_EXECUTABLE=/usr/bin/python3". echo "source ~/septentrio/devel/setup.bash" >> ~/.bashrc # It is convenient if the ROS environment variable is automatically added to your bash session every time a new shell is launched. Again, this works for bash shells only. Also note that if you have more than one ROS distribution installed, ~/.bashrc must only source the setup.bash for the version you are currently using. source ~/.bashrc ``` #### ROS 2 For ROS 2, The package has to be built from source using [`colcon`](https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Colcon-Tutorial.html): ``` source /opt/ros/${ROS_DISTRO}/setup.bash # In case you do not use the default shell of Ubuntu, you need to source another script, e.g. setup.sh. mkdir -p ~/septentrio/src # Note: Change accordingly depending on where you want your package to be installed. cd ~/septentrio/src git clone https://github.com/septentrio-gnss/septentrio_gnss_driver git checkout ros2 # Install mentioned dependencies (`sudo apt install ros-$ROS_DISTRO-nmea_msgs ros-$ROS_DISTRO-gps-msgs libboost-all-dev libpcap-dev libgeographic-dev`) colcon build --packages-up-to septentrio_gnss_driver # Be sure to call colcon build in the root folder of your workspace. Launch files are installed, so changing them on the fly in the source folder only works with installing by symlinks: add `--symlink-install` echo "source ~/septentrio/devel/setup.bash" >> ~/.bashrc # It is convenient if the ROS environment variable is automatically added to your bash session every time a new shell is launched. Again, this works for bash shells only. Also note that if you have more than one ROS distribution installed, ~/.bashrc must only source the setup.bash for the version you are currently using. source ~/.bashrc ``` Run tests ``` colcon test --packages-select septentrio_gnss_driver --event-handlers console_direct+ ```
Inertial Navigation System (INS): Basics
- An Inertial Navigation System (INS) is a device which takes the rotation and acceleration solutions as obtained from its Inertial Measurement Unit (IMU) and combines those with position and velocity information from the GNSS module. Compared to a GNSS system with 7D or 8D (dual-antenna systems) phase space solutions, the combined, Kalman-filtered 9D phase space solution (3 for position, 3 for velocity, 3 for orientation) of an INS is more accurate, more precise and more stable against GNSS outages.
-
The IMU is typically made up of a 3-axis accelerometer, a 3-axis gyroscope and sometimes a 3-axis magnetometer and measures the system's angular rate and acceleration.
Measure and Compensate for IMU-Antenna Lever Arm
- The IMU-antenna lever-arm is the relative position between the IMU reference point and the GNSS Antenna Reference Point (ARP), measured in the vehicle frame.
- In case of AsteRx SBi3, the IMU reference point is clearly marked on the top panel of the receiver. It is important to compensate for the effect of the lever arm, otherwise the receiver may not be able to calculate an accurate INS position.
- The IMU/antenna position can be changed by specifying the lever arm's
x
,y
andz
parameters in theconfig.yaml
file under theins_spatial_config.ant_lever_arm
parameter.
Compensate for IMU Orientation
+ It is important to take into consideration the mounting direction of the IMU in the body frame of the vehicle. For e.g. when the receiver is installed horizontally with the front panel facing the direction of travel, we must compensate for the IMU’s orientation to make sure the IMU reference frame is aligned with the vehicle reference frame. The IMU position and orientation is printed on the top panel, cf. image below. + The IMU's orientation can be changed by specifying the orientation anglestheta_x
,theta_y
andtheta_z
in theconfig.yaml
file underins_spatial_config.imu_orientation
+ The below image illustrates the orientation of the IMU reference frame with the associated IMU orientation for the depicted installation. Note that foruse_ros_axis_orientation: true
sensor_default is the top left position. -
These Steps should be followed to configure the receiver in INS integration mode:
- Specify
receiver_type: INS
- Specify the orientation of the IMU sensor with respect to your vehicle, using the
ins_spatial_config.imu_orientation
parameter. - Specify the IMU-antenna lever arm in the vehicle reference frame. This is the vector starting from the IMU reference point to the ARP of the main GNSS antenna. This can be done by means of the
ins_spatial_config.ant_lever_arm
parameter. - Specify
ins_spatial_config.vsm_lever_arm
if measurements of a velocity sensor is available. - Alternatively the lever arms may be specified via tf. Set
get_spatial_config_from_tf
totrue
in this case. - If the point of interest is neither the IMU nor the ARP of the main GNSS antenna, the vector between the IMU and the point of interest can be provided with the
ins_solution/poi_lever_arm
parameter.
- Specify
For further more information about Septentrio receivers, visit Septentrio support resources or check out the user manual and reference guide of the AsteRx SBi3 receiver.
ROSaic Parameters
The following is a list of ROSaic parameters found in the config/rover.yaml
file. Note, that in the following nested parameters are depicted in ROS 2 style, i.e., using a .
as delimiter, whereas in ROS 1 the delimiter is a /
.
* Parameters Configuring Communication Ports and Processing of GNSS and INS Data
Connectivity Specs
-
device
: location of main device connection. This interface will be used for setup communication and VSM data for INS. Incoming data streams of SBF blocks and NMEA sentences are recevied either via this interface or a static IP server for TCP and/or UDP. The former will be utilized if sectionstream_device.tcp
andstream_device.udp
are not configured.-
serial:xxx
format for serial connections,where xxx is the device node, e.g.serial:/dev/ttyS0
. If using serial over USB, it is recommended to specify the port by ID as the Rx may get a different ttyXXX on reconnection, e.g.serial:/dev/serial/by-id/usb-Septentrio_Septentrio_USB_Device_xyz
. -
file_name:path/to/file.sbf
format for publishing from an SBF log. When reading from a file,use_gnss_time
is automatically set to true, since constructing the time stamps from ROS time would not match the data. If the sbf log does not containReceiverTime
, parameterleap_seconds
must be set manually. -
file_name:path/to/file.pcap
format for publishing from PCAP capture. When reading from a file,use_gnss_time
is automatically set to true, since constructing the time stamps from ROS time would not match the data. If the pcap log does not containReceiverTime
, parameterleap_seconds
must be set manually.- Regarding the file path, ROS_HOME=`pwd` in front of
roslaunch septentrio...
might be useful to specify that the node should be started using the executable's directory as its working-directory.
- Regarding the file path, ROS_HOME=`pwd` in front of
-
tcp://host:port
format for TCP/IP connections-
28784
should be used as the default (command) port for TCP/IP connections. If another port is specified, the receiver needs to be (re-)configured via the Web Interface before ROSaic can be used. - An RNDIS IP interface is provided via USB, assigning the address
192.168.3.1
to the receiver. This should work on most modern Linux distributions. To verify successful connection, open a web browser to access the web interface of the receiver using the IP address192.168.3.1
.
-
- default:
tcp://192.168.3.1:28784
-
-
serial
: specifications for serial communication-
baudrate
: serial baud rate to be used in a serial connection. Ensure the provided rate is sufficient for the chosen SBF blocks. For example, activating MeasEpoch (also necessary for /gpsfix) may require up to almost 400 kBit/s. -
rx_serial_port
: determines to which (virtual) serial port of the Rx we want to get connected to, e.g. USB1 or COM1 -
hw_flow_control
: specifies whether the serial (the Rx's COM ports, not USB1 or USB2) connection to the Rx should have UART hardware flow control enabled or not-
off
to disable UART hardware flow control,RTS|CTS
to enable it
-
- default:
921600
,USB1
,off
-
-
stream_device
: If left unconfigured, by defaultdevice
is utilized for the data streams. Withinstream_device
static IP servers may be defined instead. In config mode (configure_rx
set totrue
), TCP will be prioritized over UDP. If Rx is pre-configured, both may be set simultaneously.-
tcp
: specifications for static TCP server of SBF blocks and NMEA sentences.-
ip_server
: IP server of Rx to be used, e.g. “IPS1”. -
port
: UDP destination port.
-
-
udp
: specifications for low latency UDP reception of SBF blocks and NMEA sentences.-
ip_server
: IP server of Rx to be used, e.g. “IPS1”. -
port
: UDP destination port. -
unicast_ip
: Set to computer's IP to use unicast (optional). If not set multicast will be used.
-
-
-
login
: credentials for user authentication to perform actions not allowed to anonymous users. Leave empty for anonymous access.-
user
: user name -
password
: password
-
-
custom_commands_file
: path to a file containing custom commands to be sent to the Rx. The file shall contain one command per line. Be very careful using this command, since commands are sent to the Rx without further checks.
OSNMA
-
osnma
: Configuration of the Open Service Navigation Message Authentication (OSNMA) feature.-
mode
: Three operating modes are supported:off
where OSNMA authentication is disabled,loose
where satellites are included in the PVT if they are successfully authenticated or if their authentication status is unknown, andstrict
where only successfully-authenticated satellites are included in the PVT. In case ofstrict
synchronization via NTP is mandatory.- default: off
-
ntp_server
: Instrict
mode, OSNMA authentication requires the availability of external time information. Inloose
mode, this is optional but recommended for enhanced security. The receiver can connect to an NTP time server for this purpose. Options aredefault
to let the receiver choose an NTP server or specify one likepool.ntp.org
for example.- default: ""
-
keep_open
: Wether OSNMA shall be kept active on driver shutdown.- default: true
-
Receiver Configuration
+ configure_rx: Wether to configure the Rx according to the config file. If set to `false`, the Rx has to be configured via the web interface and the settings must be saved. On the driver side communication has to set accordingly to serial, TCP or UDP (TCP and UDP may even be used simultaneously in this case). For TCP communication it is recommended to use a static TCP server (`stream_device.tcp.ip_server` and `stream_device.tcp.port`), since dynamic connections (`device` is tcp) are not guaranteed to have the same id on reconnection. It should also be ensured that obligatory SBF blocks are activated (as of now: ReceiverTime if `use_gnss_time` is set to `true`; `PVTGeodetic`or `PVTCartesian` if latency compensation for PVT related blocks shall be used). Further, if ROS messages compiled from multiple SBF blocks, it should be ensured that all necessary blocks are activated with matching periods, details can be found in section [ROS Topic Publications](#ros-topic-publications). The messages that shall be published still have to be set to `true` in the *NMEA/SBF Messages to be Published* section. Also, parameters concerning the connection and node setup are still relevant (sections: *Connectivity Specs*, *receiver type*, *Frame IDs*, *UTM Zone Locking*, *Time Systems*, *Logger*).
+ default: true
Receiver Type
-
receiver_type
: This parameter is to select the type of the Septentrio receiver-
gnss
for GNSS receivers. -
ins
for INS receivers. - default:
gnss
-
-
multi_antenna
: Whether or not the Rx has multiple antennas.- default:
false
- default:
Frame IDs
-
frame_id
: name of the ROS tf frame for the Rx, placed in the header of published GNSS messages. It corresponds to the frame of the main antenna.- In ROS, the tf package lets you keep track of multiple coordinate frames over time. The frame ID will be resolved by
tf_prefix
if defined. If a ROS message has a header (all of those we publish do), the frame ID can be found viarostopic echo /topic
, where/topic
is the topic into which the message is being published. - default:
gnss
- In ROS, the tf package lets you keep track of multiple coordinate frames over time. The frame ID will be resolved by
-
imu_frame_id
: name of the ROS tf frame for the IMU, placed in the header of published IMU message- default:
imu
- default:
-
poi_frame_id
: name of the ROS tf frame for the POI, placed in the child frame_id of localization ifins_use_poi
is set totrue
.- default:
base_link
- default:
-
vsm_frame_id
: name of the ROS tf frame for the velocity sensor.- default:
vsm
- default:
-
aux1_frame_id
: name of the ROS tf frame for the aux1 antenna.- default:
aux1
- default:
-
vehicle_frame_id
: name of the ROS tf frame for the vehicle. Default is the same aspoi_frame_id
but may be set otherwise.- default:
base_link
- default:
-
local_frame_id
: name of the ROS tf frame for the local frame.- default:
odom
- default:
-
insert_local_frame
: Wether to insert a local frame to published tf according to ROS REP 105. The transform from the local frame specified bylocal_frame_id
to the vehicle frame specified byvehicle_frame_id
has to be provided, e.g. by odometry. Insertion of the local frame means the transform between local frame and global frame is published instead of transform between vehicle frame and global frame.- default:
false
- default:
-
get_spatial_config_from_tf
: wether to get the spatial config via tf with the above mentioned frame ids. This will override spatial settings of the config file. For receiver typeins
withmulti_antenna
set totrue
all frames have to be provided, withmulti_antenna
set tofalse
,aux1_frame_id
is not necessary. For typegnss
with dual-antenna setup onlyframe_id
,aux1_frame_id
, andpoi_frame_id
are needed. For single-antennagnss
no frames are needed. Keep in mind that tf has a tree structure. Thus,poi_frame_id
is the base for all mentioned frames.- default:
false
- default:
-
use_ros_axis_orientation
Wether to use ROS axis orientations according to ROS REP 103 for body related frames and geographic frames. Body frame directions affect INS lever arms and IMU orientation setup parameters. Geographic frame directions affect orientation Euler angles for INS+GNSS and attitude of dual-antenna GNSS. Ifuse_ros_axis_orientation
is set totrue
, the driver converts between the NED convention (Septentrio: yaw = 0 is north, positive clockwise), and ENU convention (ROS: yaw = 0 is east, positive counterclockwise). There is no conversion when setting this parameter tofalse
and the angles will be consistent with the web GUI in this case.- If set to
false
Septentrios definition is used, i.e., front-right-down body related frames and NED (north-east-down) for orientation frames. - If set to
true
ROS definition is used, i.e., front-left-up body related frames and ENU (east-north-up) for orientation frames. - default:
true
- If set to
UTM zone locking
+ lock_utm_zone
: wether the UTM zone of the initial localization is locked, i.e., this zone is kept even if a zone transition would occur.
+ default: true
Datum
-
datum
: With this command, the datum the coordinates should refer to is selected. With setting it toDefault
, the datum depends on the positioning mode, e.g.WGS84
for standalone positioning.- Since the standardized GGA message does only provide the orthometric height (= MSL height = distance from Earth's surface to geoid) and the geoid undulation (distance from geoid to ellipsoid) for which non-WGS84 datums cannot be specified, it does not affect the GGA message.
- default:
Default
POI-ARP Offset
+ `poi_to_arp`: offsets of the main GNSS antenna reference point (ARP) with respect to the point of interest (POI = marker). Use for static receivers only.
+ The parameters `delta_e`, `delta_n` and `delta_u` are the offsets in the East, North and Up (ENU) directions respectively, expressed in meters.
+ All absolute positions reported by the receiver are POI positions, obtained by subtracting this offset from the ARP. The purpose is to take into account the fact that the antenna may not be located directly on the surveying POI.
+ default: `0.0`, `0.0` and `0.0`
Antenna Attitude Offset
+ `att_offset`: Angular offset between two antennas (Main and Aux) and vehicle frame
+ `heading`: The perpendicular (azimuth) axis can be compensated for by adjusting the `heading` parameter
+ `pitch`: Vertical (elevation) offset can be compensated for by adjusting the `pitch` parameter
+ default: `0.0`, `0.0` (degrees)
Antenna Specs
-
ant_type
: type of your main GNSS antenna- For best positional accuracy, it is recommended to select a type from the list returned by the command
lstAntennaInfo, Overview
. This is the list of antennas for which the receiver can compensate for phase center variation. - By default and if
ant_type
does not match any entry in the list returned bylstAntennaInfo, Overview
, the receiver will assume that the phase center variation is zero at all elevations and frequency bands, and the position will not be as accurate. - default:
Unknown
- For best positional accuracy, it is recommended to select a type from the list returned by the command
-
ant_serial_nr
: serial number of your main GNSS antenna -
ant_aux1_type
andant_aux1_serial_nr
: same for Aux1 antenna
Leap Seconds
-
leap_seconds
: Leap seconds are automatically gathered from the receiver via the SBF blockReceiverTime
. If a log file is used for simulation and this block was not recorded, the number of leap seconds that have been inserted up until the point of ROSaic usage can be set by this parameter.- At the time of writing the code (2020), the GPS time, which is unaffected by leap seconds, was ahead of UTC time by 18 leap seconds. Adapt the
leap_seconds
parameter accordingly as soon as the next leap second is inserted into the UTC time or in case you are using ROSaic for the purpose of simulations.
- At the time of writing the code (2020), the GPS time, which is unaffected by leap seconds, was ahead of UTC time by 18 leap seconds. Adapt the
Polling Periods
-
polling_period.pvt
: desired period in milliseconds between the polling of two consecutivePVTGeodetic
,PosCovGeodetic
,PVTCartesian
andPosCovCartesian
blocks and - if published - between the publishing of two of the corresponding ROS messages (e.g.septentrio_gnss_driver/PVTGeodetic.msg
). Consult firmware manual for allowed periods. If the period is set to a lower value than the receiver is capable of, it will be published with the next higher period. If set to0
, the SBF blocks are output at their natural renewal rate (OnChange
).- Clearly, the publishing of composite ROS messages such as
sensor_msgs/NavSatFix.msg
orgps_msgs/GPSFix.msg
is triggered by the SBF block that arrives last among the blocks of the current epoch. - default:
500
(2 Hz)
- Clearly, the publishing of composite ROS messages such as
-
polling_period.rest
: desired period in milliseconds between the polling of all other SBF blocks and NMEA sentences not addressed by the previous parameter, and - if published - between the publishing of all other ROS messages- default:
500
(2 Hz)
- default:
Time Systems
-
use_gnss_time
:true
if the ROS message headers' unix epoch time field shall be constructed from the TOW/WNC (in the SBF case) and UTC (in the NMEA case) data,false
if those times shall be taken by the driver from ROS time. Ifuse_gnss_time
is set totrue
, it is imperative that the ROS system is synchronized to an NTP time server or PTP clock either via internet or ideally via the Septentrio receiver since the latter serves as a Stratum 1 time server not dependent on an internet connection. If this is not followed, the time stamps may drift apart!- default:
false
- default:
-
ntp_server
: Wether the NTP server shall be activated.- default:
false
- default:
-
ptp_server_clock
: Wether the PTP server slcok hall be activated.- default:
false
- default:
-
latency_compensation
: Rx reports processing latency in PVT and INS blocks. If set totrue
this latency is subtracted from ROS timestamps in related blocks (i.e.,use_gnss_time
set tofalse
). Related blocks are INS, PVT, Covariances, and BaseVectors. In case ofuse_gnss_time
set totrue
, the latency is already compensated within the RX and included in the reported timestamps.- default:
false
- default:
RTK corrections
-
rtk_settings
: determines RTK connection parameters- There are multiple possibilities to feed RTK corrections to the Rx. They may be set simultaneously and the Rx will choose the nearest source.
- a)
ntrip_#
if the Rx has internet access and is able to receieve NTRIP streams from a caster. Up to three NTRIP connections are possible. - b)
ip_server_#
if corrections are to be receieved via TCP/IP for example overData Link
from Septentrio's RxTools is installed on a computer. Up to five IP server connections are possible. - c)
serial_#
if corrections are to be receieved via a serial port for example over radio link from a local RTK base or overData Link
from Septentrio's RxTools installed on a computer. Up to five serial connections are possible.
- a)
-
ntrip_#
: for receiving corretions from an NTRIP caster (#
is from 1 ... 3).-
id
: NTRIP connectionNTR1
,NTR2
, orNTR3
. - default: ""
-
caster
: is the hostname or IP address of the NTRIP caster to connect to. - default: ""
-
caster_port
: IP port of the NTRIP caster. - default: 2021
-
username
: user name for the NTRIP caster. - default: ""
-
pasword
: password for the NTRIP caster. The receiver encrypts the password so that it cannot be read back with the command "getNtripSettings". - default: ""
-
mountpoint
: mount point of the NTRP caster to be used. - default: ""
-
version
: argument specifies which version of the NTRIP protocol to use (v1
orv2
). - default: "v2"
-
tls
: determines wether to use TLS. - default: false
-
fingerprint
: fingerprint to be used if the certificate is self-signed. If the caster’s certificate is known by a publicly-trusted certification authority, fingerprint should be left empty. - default: ""
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: "auto"
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver automatically sends GGA messages if requested by the caster. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
-
ip_server_#
: for receiving corretions via TCP/IP (#
is from 1 ... 5).-
id
: specifies the IP serverIPS1
,IPS2
,IPS3
,IPS4
, orIPS5
. Note that ROSaic will send GGA messages on this connection ifsend_gga
is set, such that in theData Link
application ofRxTools
one just needs to set up a TCP client to the host name as found in the ROSaic parameterdevice
with the port as found inport
. If the latter connection were connection 1 onData Link
, then connection 2 would set up an NTRIP client connecting to the NTRIP caster as specified in the above parameters in order to forward the corrections from connection 2 to connection 1. - default: ""
-
port
: its port number of the connection that ROSaic establishes on the receiver. When selecting a port number, make sure to avoid conflicts with other services. - default: 0
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: ""
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver sends withsec1
. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
-
serial_#
: for receiving corretions via serial connection (#
is from 1 ... 5).-
port
: Serial connectionCOM1
,COM2
,COM3
,USB1
, orUSB2
on which corrections could be forwarded to the Rx from a serially connected radio link modem or viaData Link
for example. - default: ""
-
baud_rate
: sets the baud rate of this port for genuine serial ports, i.e., not relevant for USB connection. - default: 115200
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: "auto"
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver sends withsec1
. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
- There are multiple possibilities to feed RTK corrections to the Rx. They may be set simultaneously and the Rx will choose the nearest source.
INS Specs
+ `ins_spatial_config`: Spatial configuration of INS/IMU. Coordinates according to vehicle related frame directions chosen by `use_ros_axis_orientation` (front-left-up if `true` and front-right-down if `false`).
+ `imu_orientation`: IMU sensor orientation
+ Parameters `theta_x`, `theta_y` and `theta_z` are used to determine the sensor orientation with respect to the vehicle frame. Positive angles correspond to a right-handed (clockwise) rotation of the IMU with respect to its nominal orientation (see below). The order of the rotations is as follows: `theta_z` first, then `theta_y`, then `theta_x`.
+ The nominal orientation is where the IMU is upside down and with the `X axis` marked on the receiver pointing to the front of the vehicle. By contrast, for `use_ros_axis_orientation: true`, nominal orientation is where the `Z axis` of the IMU is pointing upwards and also with the `X axis` marked on the receiver pointing to the front of the vehicle.
+ default: `0.0`, `0.0`, `0.0` (degrees)
+ `poi_lever_arm`: The lever arm from the IMU reference point to a user-defined POI
+ Parameters `delta_x`,`delta_y` and `delta_z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `ant_lever_arm`: The lever arm from the IMU reference point to the main GNSS antenna
+ The parameters `x`,`y` and `z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `vsm_lever_arm`: The lever arm from the IMU reference point to the velocity sensor
+ The parameters `vsm_x`,`vsm_y` and `vsm_z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `ins_initial_heading`: How the receiver obtains the initial INS/GNSS integrated heading during the alignment phase
+ In case it is `auto`, the initial integrated heading is determined from GNSS measurements.
+ In case it is `stored`, the last known heading when the vehicle stopped before switching off the receiver is used as initial heading. Use if vehicle does not move when the receiver is switched off.
+ default: `auto`
+ `ins_std_dev_mask`: Maximum accepted error
+ `att_std_dev`: Configures an output limit on standard deviation of the attitude angles (max error accepted: 5 degrees)
+ `pos_std_dev`: Configures an output limit on standard deviation of the position (max error accepted: 100 meters)
+ default: `5` degrees, `10` meters
+ `ins_use_poi`: Whether or not to use the POI defined in `ins_spatial_config.poi_lever_arm`
+ If true, the point at which the INS navigation solution (e.g. in `insnavgeod` ROS topic) is calculated will be the POI as defined above (`poi_frame_id`), otherwise it'll be the main GNSS antenna (`frame_id`). Has to be set to `true` if tf shall be published.
+ default: `true`
+ `ins_vsm`: Configuration of the velocity sensor measurements. IP server may be used to receive velocity information from ROS or from an external device. Serial connection may be used to receive velocity information from an external device only.
+ `ros`: VSM info received from ROS msgs
+ `source`: Specifies which ROS message type shall be used, options are `odometry` or `twist`. Accordingly, a subscriber is established of the type [`nav_msgs/Odometry.msg`](https://docs.ros2.org/foxy/api/nav_msgs/msg/Odometry.html) or [`geometry_msgs/TwistWithCovarianceStamped.msg`](https://docs.ros2.org/foxy/api/geometry_msgs/msg/TwistWithCovarianceStamped.html) listening on the topics `odometry_vsm` or `twist_vsm` respectively. Only linear velocities are evaluated. Measurements have to be with respect to the frame aligned with the vehicle and defined by `ins_spatial_config.vsm_lever_arm` or tf-frame `vsm_frame_id`, see also comment in [`nav_msgs/Odometry.msg`](https://docs.ros2.org/foxy/api/nav_msgs/msg/Odometry.html) that twist should be specified in `child_frame_id`.
+ default: ""
+ `config`: Defines which measurements belonging to the respective axes are forwarded to the INS. In addition, non-holonomic constraints may be introduced for directions known to be restricted in movement. For example, a vehicle with Ackermann steering is limited in its sidewards and upwards movement. So, even if only motion in x-direction may be measured, zero-velocities for y and z may be sent. Only has to be set if `ins_vsm.ros.source`is set to `odometry` or `twist`.
+ default: []
+ `variances_by_parameter`: Wether variances shall be entered by parameter `ins_vsm.ros.variances` or the values from inside the ROS messages are used. Only has to be set if `ins_vsm.source`is set to `odometry` or `twist`.
+ default: false
+ `variances`: Variances of the respective axes. Only have to be set if `ins_vsm.variances_by_parameter` is set to `true`. Values must be > 0.0, else measurements cannot not be used.
+ default: []
+ `ip_server`:
+ `id`: IP server to receive the VSM info (e.g. `IPS1`). If a TCP stream device (`device.stream_device.tcp`) is set up, this device may be used here, i.e, `id` my be set to the same.
+ default: "IPS5"
+ `port`: TCP port to receive the VSM info. When selecting a port number, make sure to avoid conflicts with other services.
+ default: 24786
+ `keep_open` determines wether this connections to receive VSM shall be kept open on driver shutdown. If set to `true` the Rx will still be able to use external VSM info to improve its localization.
+ default: `true`
+ `serial`:
+ `port`: Serial port to receive the VSM info.
+ default: ""
+ `baud_rate`: Baud rate of the serial port to receive the VSM info.
+ default: 115200
+ `keep_open` determines wether this connections to receive VSM shall be kept open on driver shutdown. If set to `true` the Rx will still be able to use external VSM info to improve its localization.
+ default: `true`
Logger
+ `activate_debug_log`: `true` if ROS logger level shall be set to debug.
-
Parameters Configuring (Non-)Publishing of ROS Messages
NMEA/SBF Messages to be Published
-
publish.auto_publish
:true
to automatically publish messages for which SBF blocks and NMEA sentences are available. Only applicable ifconigure_rx
isfalse
. Iftf_ecef
shall be published, this must be explicitily set to true, else tf in UTM is published if available. -
publish.publish_only_valid
:true
to publish SBF blocks only if timestamp (TOW) is valid. -
publish.gpgga
:true
to publishnmea_msgs/GPGGA.msg
messages into the topic/gpgga
-
publish.gprmc
:true
to publishnmea_msgs/GPRMC.msg
messages into the topic/gprmc
-
publish.gpgsa
:true
to publishnmea_msgs/GPGSA.msg
messages into the topic/gpgsa
-
publish.gpgsv
:true
to publishnmea_msgs/GPGSV.msg
messages into the topic/gpgsv
-
publish.measepoch
:true
to publishseptentrio_gnss_driver/MeasEpoch.msg
messages into the topic/measepoch
-
publish.galauthstatus
:true
to publishseptentrio_gnss_driver/GALAuthStatus.msg
messages into the topic/galauthstatus
and corresponding/diganostics
-
publish.aimplusstatus
:true
to publishseptentrio_gnss_driver/RFStatus.msg
messages into the topic/rfstatus
,septentrio_gnss_driver/AIMPlusStatus.msg
messages into/aimplusstatus
and corresponding/diganostics
. Some information is only available with active OSNMA. -
publish.pvtcartesian
:true
to publishseptentrio_gnss_driver/PVTCartesian.msg
messages into the topic/pvtcartesian
-
publish.pvtgeodetic
:true
to publishseptentrio_gnss_driver/PVTGeodetic.msg
messages into the topic/pvtgeodetic
-
publish.basevectorcart
:true
to publishseptentrio_gnss_driver/BaseVectorCart.msg
messages into the topic/basevectorcart
-
publish.basevectorgeod
:true
to publishseptentrio_gnss_driver/BaseVectorGeod.msg
messages into the topic/basevectorgeod
-
publish.poscovcartesian
:true
to publishseptentrio_gnss_driver/PosCovCartesian.msg
messages into the topic/poscovcartesian
-
publish.poscovgeodetic
:true
to publishseptentrio_gnss_driver/PosCovGeodetic.msg
messages into the topic/poscovgeodetic
-
publish.velcovcartesian
:true
to publishseptentrio_gnss_driver/VelCovCartesian.msg
messages into the topic/velcovcartesian
-
publish.velcovgeodetic
:true
to publishseptentrio_gnss_driver/VelCovGeodetic.msg
messages into the topic/velcovgeodetic
-
publish.atteuler
:true
to publishseptentrio_gnss_driver/AttEuler.msg
messages into the topic/atteuler
-
publish.attcoveuler
:true
to publishseptentrio_gnss_driver/AttCovEuler.msg
messages into the topic/attcoveuler
-
publish.gpst
:true
to publishsensor_msgs/TimeReference.msg
messages into the topic/gpst
-
publish.navsatfix
:true
to publishsensor_msgs/NavSatFix.msg
messages into the topic/navsatfix
-
publish.gpsfix
:true
to publishgps_msgs/GPSFix.msg
messages into the topic/gpsfix
-
publish.pose
:true
to publishgeometry_msgs/PoseWithCovarianceStamped.msg
messages into the topic/pose
-
publish.twist
:true
to publishgeometry_msgs/TwistWithCovarianceStamped.msg
messages into the topics/twist
and/twist_ins
respectively -
publish.diagnostics
:true
to publishdiagnostic_msgs/DiagnosticArray.msg
messages into the topic/diagnostics
-
publish.insnavcart
:true
to publishseptentrio_gnss_driver/INSNavCart.msg
message into the topic/insnavcart
-
publish.insnavgeod
:true
to publishseptentrio_gnss_driver/INSNavGeod.msg
message into the topic/insnavgeod
-
publish.extsensormeas
:true
to publishseptentrio_gnss_driver/ExtSensorMeas.msg
message into the topic/extsensormeas
-
publish.imusetup
:true
to publishseptentrio_gnss_driver/IMUSetup.msg
message into the topic/imusetup
-
publish.velsensorsetup
:true
to publishseptentrio_gnss_driver/VelSensorSetup.msgs
message into the topic/velsensorsetup
-
publish.exteventinsnavcart
:true
to publishseptentrio_gnss_driver/ExtEventINSNavCart.msgs
message into the topic/exteventinsnavcart
-
publish.exteventinsnavgeod
:true
to publishseptentrio_gnss_driver/ExtEventINSNavGeod.msgs
message into the topic/exteventinsnavgeod
-
publish.imu
:true
to publishsensor_msgs/Imu.msg
message into the topic/imu
-
publish.localization
:true
to publishnav_msgs/Odometry.msg
message into the topic/localization
-
publish.tf
:true
to broadcast tf of localization.ins_use_poi
must also be set to true to publish tf. Note that only one ofpublish.tf
orpublish.tf_ecef
may betrue
.
-
publish.localization_ecef
:true
to publishnav_msgs/Odometry.msg
message into the topic/localization
related to ECEF frame. -
publish.tf_ecef
:true
to broadcast tf of localization related to ECEF frame.ins_use_poi
must also be set to true to publish tf. Note that only one ofpublish.tf
orpublish.tf_ecef
may betrue
.
-
ROS Topic Publications
A selection of NMEA sentences, the majority being standardized sentences, and proprietary SBF blocks is translated into ROS messages, partly generic and partly custom, and can be published at the discretion of the user into the following ROS topics. All published ROS messages, even custom ones, start with a ROS generic header std_msgs/Header.msg
, which includes the receiver time stamp as well as the frame ID, the latter being specified in the ROS parameter frame_id
.
Available ROS Topics
-
/gpgga
: publishesnmea_msgs/Gpgga.msg
- converted from the NMEA sentence GGA. -
/gprmc
: publishesnmea_msgs/Gprmc.msg
- converted from the NMEA sentence RMC. -
/gpgsa
: publishesnmea_msgs/Gpgsa.msg
- converted from the NMEA sentence GSA. -
/gpgsv
: publishesnmea_msgs/Gpgsv.msg
- converted from the NMEA sentence GSV. -
/measepoch
: publishes custom ROS messageseptentrio_gnss_driver/MeasEpoch.msg
, corresponding to the SBF blockMeasEpoch
.
-
/galauthstatus
: publishes custom ROS messageseptentrio_gnss_driver/GALAuthStatus.msg
, corresponding to the SBF blockGALAuthStatus
. -
/rfstatus
: publishes custom ROS messageseptentrio_gnss_driver/RFStatus.msg
, compiled from the SBF blockRFStatus
. -
/aimplusstatus
: publishes custom ROS messageseptentrio_gnss_driver/AIMPlusStatus.msg
, reporting status of AIM+. Converted from SBF blocksRFStatus
and optionallyGALAuthStatus
. For the latter OSNMA has to be activated. -
/pvtcartesian
: publishes custom ROS messageseptentrio_gnss_driver/PVTCartesian.msg
, corresponding to the SBF blockPVTCartesian
(GNSS case) orINSNavGeod
(INS case). -
/pvtgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/PVTGeodetic.msg
, corresponding to the SBF blockPVTGeodetic
(GNSS case) orINSNavGeod
(INS case). -
/basevectorcart
: publishes custom ROS messageseptentrio_gnss_driver/BaseVectorCart.msg
, corresponding to the SBF blockBaseVectorCart
. -
/basevectorgeod
: publishes custom ROS messageseptentrio_gnss_driver/BaseVectorGeod.msg
, corresponding to the SBF blockBaseVectorGeod
. -
/poscovcartesian
: publishes custom ROS messageseptentrio_gnss_driver/PosCovCartesian.msg
, corresponding to SBF blockPosCovCartesian
(GNSS case) orINSNavGeod
(INS case). -
/poscovgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/PosCovGeodetic.msg
, corresponding to SBF blockPosCovGeodetic
(GNSS case) orINSNavGeod
(INS case). -
/velcovcartesian
: publishes custom ROS messageseptentrio_gnss_driver/VelCovCartesian.msg
, corresponding to SBF blockVelCovCartesian
(GNSS case). -
/velcovgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/VelCovGeodetic.msg
, corresponding to SBF blockVelCovGeodetic
(GNSS case). -
/atteuler
: publishes custom ROS messageseptentrio_gnss_driver/AttEuler.msg
, corresponding to SBF blockAttEuler
. -
/attcoveuler
: publishes custom ROS messageseptentrio_gnss_driver/AttCovEuler.msg
, corresponding to the SBF blockAttCovEuler
. -
/gpst
(for GPS Time): publishes generic ROS messagesensor_msgs/TimeReference.msg
, converted from thePVTGeodetic
(GNSS case) orINSNavGeod
(INS case) block's GPS time information, stored in its block header. -
/navsatfix
: publishes generic ROS messagesensor_msgs/NavSatFix.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
(GNSS case) orINSNavGeod
(INS case)- The ROS message
sensor_msgs/NavSatFix.msg
can be fed directly into thenavsat_transform_node
of the ROS navigation stack.
- The ROS message
-
/gpsfix
: publishes generic ROS messagegps_msgs/GPSFix.msg
, which is much more detailed thansensor_msgs/NavSatFix.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
,ChannelStatus
,MeasEpoch
,AttEuler
,AttCovEuler
,VelCovGeodetic
,DOP
(GNSS case) orINSNavGeod
,ChannelStatus
,MeasEpoch
,DOP
(INS case). In order to publish heading information, the field dip is diverted from its intended meaning an populated with the heading angle and err_dip with its uncertainty.- INS case: Beware, in order to allow a high update rate,
ChannelStatus
,MeasEpoch
, andDOP
are not time aligned, i.e., they might contain outdated information.
- INS case: Beware, in order to allow a high update rate,
-
/pose
: publishes generic ROS messagegeometry_msgs/PoseWithCovarianceStamped.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
,AttEuler
,AttCovEuler
(GNSS case) orINSNavGeod
(INS case).- Note that GNSS provides absolute positioning, while robots are often localized within a local level cartesian frame. The pose field of this ROS message contains position with respect to the absolute ENU frame (longitude, latitude, height), i.e. not a cartesian frame, while the orientation is with respect to a vehicle-fixed (e.g. for mosaic-x5 in moving base mode via the command
setAttitudeOffset
, ...) !local! NED frame or ENU frame ifuse_ros_axis_directions
is settrue
. Thus the orientation is !not! given with respect to the same frame as the position is given in. The cross-covariances are hence set to 0.
- Note that GNSS provides absolute positioning, while robots are often localized within a local level cartesian frame. The pose field of this ROS message contains position with respect to the absolute ENU frame (longitude, latitude, height), i.e. not a cartesian frame, while the orientation is with respect to a vehicle-fixed (e.g. for mosaic-x5 in moving base mode via the command
-
/twist
: publishes generic ROS messagegeometry_msgs/TwistWithCovarianceStamped.msg
, converted from the SBF blocksPVTGeodetic
andVelCovGeodetic
. -
/twist_ins
: publishes generic ROS messagegeometry_msgs/TwistWithCovarianceStamped.msg
, converted from SBF blockINSNavGeod
. -
/insnavcart
: publishes custom ROS messageseptentrio_gnss_driver/INSNavCart.msg
, corresponding to SBF blockINSNavCart
-
/insnavgeod
: publishes custom ROS messageseptentrio_gnss_driver/INSNavGeod.msg
, corresponding to SBF blockINSNavGeod
-
/extsensormeas
: publishes custom ROS messageseptentrio_gnss_driver/ExtSensorMeas.msg
, corresponding to SBF blockExtSensorMeas
. -
/imusetup
: publishes custom ROS messageseptentrio_gnss_driver/IMUSetup.msg
, corresponding to SBF blockIMUSetup
. -
/velsensorsetup
: publishes custom ROS messageseptentrio_gnss_driver/VelSensorSetup.msg
corresponding to SBF blockVelSensorSetup
. -
/exteventinsnavcart
: publishes custom ROS messageseptentrio_gnss_driver/INSNavCart.msg
, corresponding to SBF blockExtEventINSNavCart
. -
/exteventinsnavgeod
: publishes custom ROS messageseptentrio_gnss_driver/INSNavGeod.msg
, corresponding to SBF blockExtEventINSNavGeod
. -
/diagnostics
: accepts generic ROS messagediagnostic_msgs/DiagnosticArray.msg
, converted from the SBF blocksQualityInd
,ReceiverStatus
andReceiverSetup
-
/imu
: accepts generic ROS messagesensor_msgs/Imu.msg
, converted from the SBF blocksExtSensorMeas
andINSNavGeod
.- The ROS message
sensor_msgs/Imu.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
-
/localization
: accepts generic ROS messagenav_msgs/Odometry.msg
, converted from the SBF blockINSNavGeod
and transformed to UTM.- The ROS message
nav_msgs/Odometry.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
-
/localization_ecef
: accepts generic ROS messagenav_msgs/Odometry.msg
, converted from the SBF blocksINSNavCart
andINSNavGeod
.- The ROS message
nav_msgs/Odometry.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
Suggestions for Improvements
Some Ideas
+ Equip ROSaic with an NTRIP client such that it can forward corrections to the receiver independently of `Data Link`.Adding New SBF Blocks or NMEA Sentences
Steps to Follow
Is there an SBF or NMEA message that is not being addressed while being important to your application? If yes, follow these steps: 1. Find the log reference of interest in the publicly accessible, official documentation. Hence select the reference guide file, e.g. for mosaic-x5 in the [product support section for mosaic-X5](https://www.septentrio.com/en/support/mosaic/mosaic-x5), Chapter 4, of Septentrio's homepage. 2. SBF: Add a new `.msg` file to the `../msg` folder. And modify the `../CMakeLists.txt` file by adding a new entry to the `add_message_files` section. 3. Add msg header and typedef to `typedefs.hpp`. 4. Parsers: - SBF: Add a parser to the `sbf_blocks.hpp` file. - NMEA: Construct two new parsing files such as `gpgga.cpp` to the `../src/septentrio_gnss_driver/parsers/nmea_parsers` folder and one such as `gpgga.hpp` to the `../include/septentrio_gnss_driver/parsers/nmea_parsers` folder. 5. Processing the message/block: - SBF: Extend the `SbfId` enumeration in the `message_handler.hpp` file with a new entry. - SBF: Extend the SBF switch-case in `message_handler.cpp` file with a new case. - NMEA: Extend the `nmeaMap_` in the `message_handler.hpp` file with a new pair. - NMEA: Extend the NMEA switch-case in `message_handler.cpp` file with a new case. 6. Create a new `publish/..` ROSaic parameter in the `../config/rover.yaml` file and create a boolean variable `publish_xxx` in the struct in the `settings.h` file. Parse the parameter in the `rosaic_node.cpp` file. 7. Add SBF block or NMEA to data stream setup in `communication_core.cpp` (function `configureRx()`).CONTRIBUTING
Repository Summary
Checkout URI | https://github.com/septentrio-gnss/septentrio_gnss_driver.git |
VCS Type | git |
VCS Version | master |
Last Updated | 2024-08-04 |
Dev Status | MAINTAINED |
CI status | No Continuous Integration |
Released | RELEASED |
Tags | No category tags. |
Contributing |
Help Wanted (0)
Good First Issues (0) Pull Requests to Review (0) |
Packages
Name | Version |
---|---|
septentrio_gnss_driver | 1.4.1 |
README
ROSaic = ROS + mosaic
Overview
This repository hosts drivers for ROS 1 (Melodic and Noetic) and ROS 2 (Foxy, Galactic, Humble, Iron, Rolling, and beyond) - written in C++ - that work with mosaic and AsteRx - two of Septentrio's cutting-edge GNSS and GNSS/INS receiver families - and beyond. Both ROS 1 and ROS 2 are supported within one repository.
Main Features:
- Supports Septentrio's single antenna GNSS, dual antenna GNSS and INS receivers
- Supports serial, TCP/IP and USB connections, the latter being compatible with both serial (RNDIS) and TCP/IP protocols
- Supports several ASCII (including key NMEA ones) messages and SBF (Septentrio Binary Format) blocks
- Reports status of AIM+ (Advanced Interference Mitigation including OSNMA) anti-jamming and anti-spoofing.
- Can publish nav_msgs/Odometry
message for INS receivers
- Can blend SBF blocks PVTGeodetic
, PosCovGeodetic
, ChannelStatus
, MeasEpoch
, AttEuler
, AttCovEuler
, VelCovGeodetic
and DOP
in order to publish gps_common/GPSFix
and sensor_msgs/NavSatFix
messages
- Supports optional axis convention conversion since Septentrio follows the NED convention, whereas ROS is ENU.
- Easy configuration of multiple RTK corrections simultaneously (via NTRIP, TCP/IP stream, or serial)
- Can play back PCAP capture logs for testing purposes
- Tested with the mosaic-X5, mosaic-H, AsteRx-m3 Pro+, AsteRx-SB Pro+ and the AsteRx-SBi3 Pro receiver
- Easy to add support for more log types
Please let the maintainers know of your success or failure in using the driver with other devices so we can update this page appropriately.
Usage
Important notes
Notes Before Usage
+ The driver assumes that our anonymous access to the Rx grants us full control rights. This should be the case by default, and can otherwise be changed with the `setDefaultAccessLevel` command. If user control is in place user credentials can be given by parameters `login.user` and `login.password`. + Note for serial connection: Make sure the user is part of the `dialout` group to have full access to the serial ports. If not, add it for example with `sudo adduser [username] dialout`. + Note for setting hw_flow_control: This is a string parameter, setting it to off without quotes leads to the fact that it is not read in correctly. + Note for setting ant_(aux1)_serial_nr: This is a string parameter, numeric only serial numbers should be put in quotes. If this is not done a warning will be issued and the driver tries to parse it as integer. + Note for usage of NTRIP via USB with virtual ethernet (RNDIS): RNDIS provides a virtual network connection only between the receiver and the PC. First outgoing network access via USB has to be activated, which is explained [here](https://www.youtube.com/watch?v=bUt8cL9Ue1Y). Next setup internet sharing under Linux by setting the connection of the virtual network interface (the name should be something like enx1a3202991545) to "Shared to other computers". + Once the build or binary installation is finished, adapt the `config/rover.yaml` file according to your needs or assemble a new one, examples for GNSS specific parameters `config/gnss.yaml` and INS `config/ins.yaml` are also available. Specify the communication parameters, the ROS messages to be published, the frequency at which the latter should happen etc.ROS 1: Launch the `launch/rover.launch` to use `rover.yaml` or add `param_file_name:=xxx` to use a custom config.
ROS 2: Launch as composition with `ros2 launch septentrio_gnss_driver rover.launch.py` to use `rover.yaml` or add `file_name:=xxx.yaml` to use a custom config. Alternatively launch as node with `ros2 launch septentrio_gnss_driver rover_node.launch.py` to use `rover_node.yaml` or add `file_name:=xxx.yaml` to use a custom config. Specify the communication parameters, the ROS messages to be published, the frequency at which the latter should happen etc. + Besides the aforementioned config file `rover.yaml` containing all parameters, specialized launch files for GNSS `config/gnss.yaml` and INS `config/ins.yaml` respectively contain only the relevant parameters in each case. - NOTE: Unless `configure_rx` is set to `false`, this driver will overwrite the previous values of the parameters, even if the value is left to zero in the "yaml" file. + The driver was developed and tested with firmware versions >= 4.10.0 for GNSS and >= 1.3.2 for INS. Receivers with older firmware versions are supported but some features may not be available. Known limitations are: * GNSS with firmware < 4.10.0 does not support IP over USB. * GNSS with firmware < 4.12.1 does not support OSNMA. * GNSS with firmware < 4.14 does not support PTP server clock. * INS with firmware <= 1.2.0 does not support velocity aiding. * INS with firmware <= 1.2.0 does not support setting of initial heading. * INS with firmware < 1.3.2 does not support NTP. * INS with firmware < 1.4 does not support OSNMA. * INS with firmware < 1.4.1 does not support improved VSM handling allowing for unknown variances. * INS does not support PTP server clock as of now. + Known issues: * UDP over USB: Blocks are sent twice on GNSS with firmware <= 4.12.1 and INS with firmware <= 1.4. For GNSS it is fixed in version 4.14 (released on June 15th 2023), for INS is fixed in 1.4.1 (released November 2023). + If `use_ros_axis_orientation` to `true` axis orientations are converted by the driver between NED (Septentrio: yaw = 0 is north, positive clockwise) and ENU (ROS: yaw = 0 is east, positive counterclockwise). There is no conversion when setting this parameter to `false` and the angles will be consistent with the web GUI in this case. :
``` # Example configuration Settings for the Rover Rx device: tcp://192.168.3.1:28784 serial: baudrate: 921600 hw_flow_control: "off" stream_device: tcp: ip_server: "" port: 0 udp: ip_server: "" port: 0 unicast_ip: "" configure_rx: true custom_commands_file: "" login: user: "" password: "" osnma: mode: "off" ntp_server: "" keep_open: true frame_id: gnss imu_frame_id: imu poi_frame_id: base_link vsm_frame_id: vsm aux1_frame_id: aux1 vehicle_frame_id: base_link insert_local_frame: false local_frame_id: odom get_spatial_config_from_tf: true lock_utm_zone: true use_ros_axis_orientation: true receiver_type: gnss datum: Default poi_to_arp: delta_e: 0.0 delta_n: 0.0 delta_u: 0.0 att_offset: heading: 0.0 pitch: 0.0 ant_type: Unknown ant_aux1_type: Unknown ant_serial_nr: Unknown ant_aux1_serial_nr: Unknown leap_seconds: 18 polling_period: pvt: 500 rest: 500 use_gnss_time: false ntp_server: false ptp_server_clock: false latency_compensation: false rtk_settings: ntrip_1: id: "NTR1" caster: "1.2.3.4" caster_port: 2101 username: "Asterix" password: "password" mountpoint: "mtpt1" version: "v2" tls: true fingerprint: "AA:BB:56:78:90:12: ... 78:90:12:34" rtk_standard: "RTCMv3" send_gga: "auto" keep_open: true ntrip_2: id: "NTR3" caster: "5.6.7.8" caster_port: 2101 username: "Obelix" password: "password" mountpoint: "mtpt2" version: "v2" tls: false fingerprint: "" rtk_standard: "RTCMv2" send_gga: "auto" keep_open: true ip_server_1: id: "IPS3" port: 28785 rtk_standard: "RTCMv2" send_gga: "auto" keep_open: true ip_server_2: id: "IPS5" port: 28786 rtk_standard: "CMRv2" send_gga: "auto" keep_open: true serial_1: port: "COM1" baud_rate: 230400 rtk_standard: "auto" send_gga: "sec1" keep_open: true serial_2: port: "COM2" baud_rate: 230400 rtk_standard: "auto" send_gga: "off" keep_open: true publish: # For both GNSS and INS Rxs auto_publish: false publish_only_valid: false navsatfix: false gpsfix: true gpgga: false gprmc: false gpst: false measepoch: false pvtcartesian: false pvtgeodetic: true basevectorcart: false basevectorgeod: false poscovcartesian: false poscovgeodetic: true velcovcartesian: false velcovgeodetic: false atteuler: true attcoveuler: true pose: false twist: false diagnostics: false aimplusstatus: true galauthstatus: false # For GNSS Rx only gpgsa: false gpgsv: false # For INS Rx only insnavcart: false insnavgeod: false extsensormeas: false imusetup: false velsensorsetup: false exteventinsnavcart: false exteventinsnavgeod: false imu: false localization: false tf: false localization_ecef: false tf_ecef: false # INS-Specific Parameters ins_spatial_config: imu_orientation: theta_x: 0.0 theta_y: 0.0 theta_z: 0.0 poi_lever_arm: delta_x: 0.0 delta_y: 0.0 delta_z: 0.0 ant_lever_arm: x: 0.0 y: 0.0 z: 0.0 vsm_lever_arm: vsm_x: 0.0 vsm_y: 0.0 vsm_z: 0.0 ins_initial_heading: auto ins_std_dev_mask: att_std_dev: 5.0 pos_std_dev: 10.0 ins_use_poi: true ins_vsm: source: "twist" config: [true, false, false] variances_by_parameter: true variances: [0.1, 0.0, 0.0] ip_server: id: "IPS2" port: 28787 keep_open: true serial: port: "COM3" baud_rate: 115200 keep_open: true # Logger activate_debug_log: false ``` In order to launch ROSaic, the launch command for ROS 1 reads `roslaunch septentrio_gnss_driver rover.launch param_file_name:=rover` and for ROS 2 reads `ros2 launch septentrio_gnss_driver rover.py file_name:=rover.yaml`. If multiple port are utilized for RTK corrections and/or VSM, which shall be closed after driver shutdown (`keep_open: false`), make sure to give the driver enough time to gracefully shutdown as closing the ports takes a few seconds. For ROS 2, this can be accomplished in the launch files by increasing the timeout of SIGTERM (e.g. `sigterm_timeout = '10',`), see example launch files`rover.launch.py`and `rover_node.launch.py` respectively.
Dependencies
ROS
This driver functions on ROS 1 [Melodic](https://wiki.ros.org/melodic/Installation/Ubuntu) and [Noetic](https://wiki.ros.org/noetic/Installation/Ubuntu) or ROS 2 [Foxy](https://docs.ros.org/en/foxy/Installation.html), [Galactic](https://docs.ros.org/en/galactic/Installation.html), [Humble](https://docs.ros.org/en/humble/Installation.html) [Iron](https://docs.ros.org/en/iron/Installation.html), [Jazzy](https://docs.ros.org/en/jazzy/Installation.html), and [Rolling](https://docs.ros.org/en/rolling/Installation.html) (Ubuntu 18.04, 20.04, 22.04, or 24.04 respectively). It is thus necessary to install the ROS version that has been designed for your Linux distro.Binary Install
The binary release is available for ROS 1 (Melodic and Noetic) and ROS 2 (Foxy, Galactic, Humble, Iron, Jazzy, and Rolling). Since Melodic, Foxy, and Galactic are EOL, only Noetic, Humble, Iron, Jazzy, and Rolling will get updated versions. To install the binary package, simply run `sudo apt-get install ros-$ROS_DISTRO-septentrio-gnss-driver`.Build from source
Build
+ Building ROSaic only works from C++17 onwards due to the usage of std::any() etc. #### Dependencies for development Additional ROS packages have to be installed for the NMEA and GPSFix messages.ROS 1: `sudo apt install ros-$ROS_DISTRO-nmea-msgs ros-$ROS_DISTRO-gps-common`.
ROS 2: `sudo apt install ros-$ROS_DISTRO-nmea-msgs ros-$ROS_DISTRO-gps-msgs`.
The serial and TCP/IP communication interface of the ROS driver is established by means of the [Boost C++ library](https://www.boost.org/). In the unlikely event that the below installation instructions fail to install Boost on the fly, please install the Boost libraries via
`sudo apt install libboost-all-dev`.
Conversions from LLA to UTM are incorporated through [GeographicLib](https://geographiclib.sourceforge.io/). Install the necessary headers via
`sudo apt install libgeographic-dev`
or
`sudo apt install libgeographiclib-dev`
since Ubunutu 24.04. respectively.
Compatiblity with PCAP captures are incorporated through [pcap libraries](https://github.com/the-tcpdump-group/libpcap). Install the necessary headers via
`sudo apt install libpcap-dev`.
#### ROS 1 For ROS 1, the package can be built from source using [`catkin_tools`](https://catkin-tools.readthedocs.io/en/latest/installing.html), where the latter can be installed using the command `sudo apt-get install python-catkin-tools` for Melodic or `sudo apt-get install python3-catkin-tools` for Noetic. The typical `catkin_tools` [workflow](https://catkin-tools.readthedocs.io/en/latest/quick_start.html) should suffice: ``` source /opt/ros/${ROS_DISTRO}/setup.bash # In case you do not use the default shell of Ubuntu, you need to source another script, e.g. setup.sh. mkdir -p ~/septentrio/src # Note: Change accordingly depending on where you want your package to be installed. cd ~/septentrio catkin init # Initialize with a hidden marker file catkin config --cmake-args -DCMAKE_BUILD_TYPE=RelWithDebInfo # CMake build types pass compiler-specific flags to your compiler. This type amounts to a release with debug info, while keeping debugging symbols and doing optimization. I.e. for GCC the flags would be -O2, -g and -DNDEBUG. cd src git clone https://github.com/septentrio-gnss/septentrio_gnss_driver rosdep install . --from-paths -i # Might raise "rosaic: Unsupported OS [mint]" warning, if your OS is Linux Mint, since rosdep does not know Mint (and possible other OSes). In that case, add the "--os=ubuntu:saucy" option to "fool" rosdep into believing it faces some Ubuntu version. The syntax is "--os=OS_NAME:OS_VERSION". catkin build # If catkin cannot find empty, tell catkin to use Python 3 by adding "-DPYTHON_EXECUTABLE=/usr/bin/python3". echo "source ~/septentrio/devel/setup.bash" >> ~/.bashrc # It is convenient if the ROS environment variable is automatically added to your bash session every time a new shell is launched. Again, this works for bash shells only. Also note that if you have more than one ROS distribution installed, ~/.bashrc must only source the setup.bash for the version you are currently using. source ~/.bashrc ``` #### ROS 2 For ROS 2, The package has to be built from source using [`colcon`](https://docs.ros.org/en/humble/Tutorials/Beginner-Client-Libraries/Colcon-Tutorial.html): ``` source /opt/ros/${ROS_DISTRO}/setup.bash # In case you do not use the default shell of Ubuntu, you need to source another script, e.g. setup.sh. mkdir -p ~/septentrio/src # Note: Change accordingly depending on where you want your package to be installed. cd ~/septentrio/src git clone https://github.com/septentrio-gnss/septentrio_gnss_driver git checkout ros2 # Install mentioned dependencies (`sudo apt install ros-$ROS_DISTRO-nmea_msgs ros-$ROS_DISTRO-gps-msgs libboost-all-dev libpcap-dev libgeographic-dev`) colcon build --packages-up-to septentrio_gnss_driver # Be sure to call colcon build in the root folder of your workspace. Launch files are installed, so changing them on the fly in the source folder only works with installing by symlinks: add `--symlink-install` echo "source ~/septentrio/devel/setup.bash" >> ~/.bashrc # It is convenient if the ROS environment variable is automatically added to your bash session every time a new shell is launched. Again, this works for bash shells only. Also note that if you have more than one ROS distribution installed, ~/.bashrc must only source the setup.bash for the version you are currently using. source ~/.bashrc ``` Run tests ``` colcon test --packages-select septentrio_gnss_driver --event-handlers console_direct+ ```
Inertial Navigation System (INS): Basics
- An Inertial Navigation System (INS) is a device which takes the rotation and acceleration solutions as obtained from its Inertial Measurement Unit (IMU) and combines those with position and velocity information from the GNSS module. Compared to a GNSS system with 7D or 8D (dual-antenna systems) phase space solutions, the combined, Kalman-filtered 9D phase space solution (3 for position, 3 for velocity, 3 for orientation) of an INS is more accurate, more precise and more stable against GNSS outages.
-
The IMU is typically made up of a 3-axis accelerometer, a 3-axis gyroscope and sometimes a 3-axis magnetometer and measures the system's angular rate and acceleration.
Measure and Compensate for IMU-Antenna Lever Arm
- The IMU-antenna lever-arm is the relative position between the IMU reference point and the GNSS Antenna Reference Point (ARP), measured in the vehicle frame.
- In case of AsteRx SBi3, the IMU reference point is clearly marked on the top panel of the receiver. It is important to compensate for the effect of the lever arm, otherwise the receiver may not be able to calculate an accurate INS position.
- The IMU/antenna position can be changed by specifying the lever arm's
x
,y
andz
parameters in theconfig.yaml
file under theins_spatial_config.ant_lever_arm
parameter.
Compensate for IMU Orientation
+ It is important to take into consideration the mounting direction of the IMU in the body frame of the vehicle. For e.g. when the receiver is installed horizontally with the front panel facing the direction of travel, we must compensate for the IMU’s orientation to make sure the IMU reference frame is aligned with the vehicle reference frame. The IMU position and orientation is printed on the top panel, cf. image below. + The IMU's orientation can be changed by specifying the orientation anglestheta_x
,theta_y
andtheta_z
in theconfig.yaml
file underins_spatial_config.imu_orientation
+ The below image illustrates the orientation of the IMU reference frame with the associated IMU orientation for the depicted installation. Note that foruse_ros_axis_orientation: true
sensor_default is the top left position. -
These Steps should be followed to configure the receiver in INS integration mode:
- Specify
receiver_type: INS
- Specify the orientation of the IMU sensor with respect to your vehicle, using the
ins_spatial_config.imu_orientation
parameter. - Specify the IMU-antenna lever arm in the vehicle reference frame. This is the vector starting from the IMU reference point to the ARP of the main GNSS antenna. This can be done by means of the
ins_spatial_config.ant_lever_arm
parameter. - Specify
ins_spatial_config.vsm_lever_arm
if measurements of a velocity sensor is available. - Alternatively the lever arms may be specified via tf. Set
get_spatial_config_from_tf
totrue
in this case. - If the point of interest is neither the IMU nor the ARP of the main GNSS antenna, the vector between the IMU and the point of interest can be provided with the
ins_solution/poi_lever_arm
parameter.
- Specify
For further more information about Septentrio receivers, visit Septentrio support resources or check out the user manual and reference guide of the AsteRx SBi3 receiver.
ROSaic Parameters
The following is a list of ROSaic parameters found in the config/rover.yaml
file. Note, that in the following nested parameters are depicted in ROS 2 style, i.e., using a .
as delimiter, whereas in ROS 1 the delimiter is a /
.
* Parameters Configuring Communication Ports and Processing of GNSS and INS Data
Connectivity Specs
-
device
: location of main device connection. This interface will be used for setup communication and VSM data for INS. Incoming data streams of SBF blocks and NMEA sentences are recevied either via this interface or a static IP server for TCP and/or UDP. The former will be utilized if sectionstream_device.tcp
andstream_device.udp
are not configured.-
serial:xxx
format for serial connections,where xxx is the device node, e.g.serial:/dev/ttyS0
. If using serial over USB, it is recommended to specify the port by ID as the Rx may get a different ttyXXX on reconnection, e.g.serial:/dev/serial/by-id/usb-Septentrio_Septentrio_USB_Device_xyz
. -
file_name:path/to/file.sbf
format for publishing from an SBF log. When reading from a file,use_gnss_time
is automatically set to true, since constructing the time stamps from ROS time would not match the data. If the sbf log does not containReceiverTime
, parameterleap_seconds
must be set manually. -
file_name:path/to/file.pcap
format for publishing from PCAP capture. When reading from a file,use_gnss_time
is automatically set to true, since constructing the time stamps from ROS time would not match the data. If the pcap log does not containReceiverTime
, parameterleap_seconds
must be set manually.- Regarding the file path, ROS_HOME=`pwd` in front of
roslaunch septentrio...
might be useful to specify that the node should be started using the executable's directory as its working-directory.
- Regarding the file path, ROS_HOME=`pwd` in front of
-
tcp://host:port
format for TCP/IP connections-
28784
should be used as the default (command) port for TCP/IP connections. If another port is specified, the receiver needs to be (re-)configured via the Web Interface before ROSaic can be used. - An RNDIS IP interface is provided via USB, assigning the address
192.168.3.1
to the receiver. This should work on most modern Linux distributions. To verify successful connection, open a web browser to access the web interface of the receiver using the IP address192.168.3.1
.
-
- default:
tcp://192.168.3.1:28784
-
-
serial
: specifications for serial communication-
baudrate
: serial baud rate to be used in a serial connection. Ensure the provided rate is sufficient for the chosen SBF blocks. For example, activating MeasEpoch (also necessary for /gpsfix) may require up to almost 400 kBit/s. -
rx_serial_port
: determines to which (virtual) serial port of the Rx we want to get connected to, e.g. USB1 or COM1 -
hw_flow_control
: specifies whether the serial (the Rx's COM ports, not USB1 or USB2) connection to the Rx should have UART hardware flow control enabled or not-
off
to disable UART hardware flow control,RTS|CTS
to enable it
-
- default:
921600
,USB1
,off
-
-
stream_device
: If left unconfigured, by defaultdevice
is utilized for the data streams. Withinstream_device
static IP servers may be defined instead. In config mode (configure_rx
set totrue
), TCP will be prioritized over UDP. If Rx is pre-configured, both may be set simultaneously.-
tcp
: specifications for static TCP server of SBF blocks and NMEA sentences.-
ip_server
: IP server of Rx to be used, e.g. “IPS1”. -
port
: UDP destination port.
-
-
udp
: specifications for low latency UDP reception of SBF blocks and NMEA sentences.-
ip_server
: IP server of Rx to be used, e.g. “IPS1”. -
port
: UDP destination port. -
unicast_ip
: Set to computer's IP to use unicast (optional). If not set multicast will be used.
-
-
-
login
: credentials for user authentication to perform actions not allowed to anonymous users. Leave empty for anonymous access.-
user
: user name -
password
: password
-
-
custom_commands_file
: path to a file containing custom commands to be sent to the Rx. The file shall contain one command per line. Be very careful using this command, since commands are sent to the Rx without further checks.
OSNMA
-
osnma
: Configuration of the Open Service Navigation Message Authentication (OSNMA) feature.-
mode
: Three operating modes are supported:off
where OSNMA authentication is disabled,loose
where satellites are included in the PVT if they are successfully authenticated or if their authentication status is unknown, andstrict
where only successfully-authenticated satellites are included in the PVT. In case ofstrict
synchronization via NTP is mandatory.- default: off
-
ntp_server
: Instrict
mode, OSNMA authentication requires the availability of external time information. Inloose
mode, this is optional but recommended for enhanced security. The receiver can connect to an NTP time server for this purpose. Options aredefault
to let the receiver choose an NTP server or specify one likepool.ntp.org
for example.- default: ""
-
keep_open
: Wether OSNMA shall be kept active on driver shutdown.- default: true
-
Receiver Configuration
+ configure_rx: Wether to configure the Rx according to the config file. If set to `false`, the Rx has to be configured via the web interface and the settings must be saved. On the driver side communication has to set accordingly to serial, TCP or UDP (TCP and UDP may even be used simultaneously in this case). For TCP communication it is recommended to use a static TCP server (`stream_device.tcp.ip_server` and `stream_device.tcp.port`), since dynamic connections (`device` is tcp) are not guaranteed to have the same id on reconnection. It should also be ensured that obligatory SBF blocks are activated (as of now: ReceiverTime if `use_gnss_time` is set to `true`; `PVTGeodetic`or `PVTCartesian` if latency compensation for PVT related blocks shall be used). Further, if ROS messages compiled from multiple SBF blocks, it should be ensured that all necessary blocks are activated with matching periods, details can be found in section [ROS Topic Publications](#ros-topic-publications). The messages that shall be published still have to be set to `true` in the *NMEA/SBF Messages to be Published* section. Also, parameters concerning the connection and node setup are still relevant (sections: *Connectivity Specs*, *receiver type*, *Frame IDs*, *UTM Zone Locking*, *Time Systems*, *Logger*).
+ default: true
Receiver Type
-
receiver_type
: This parameter is to select the type of the Septentrio receiver-
gnss
for GNSS receivers. -
ins
for INS receivers. - default:
gnss
-
-
multi_antenna
: Whether or not the Rx has multiple antennas.- default:
false
- default:
Frame IDs
-
frame_id
: name of the ROS tf frame for the Rx, placed in the header of published GNSS messages. It corresponds to the frame of the main antenna.- In ROS, the tf package lets you keep track of multiple coordinate frames over time. The frame ID will be resolved by
tf_prefix
if defined. If a ROS message has a header (all of those we publish do), the frame ID can be found viarostopic echo /topic
, where/topic
is the topic into which the message is being published. - default:
gnss
- In ROS, the tf package lets you keep track of multiple coordinate frames over time. The frame ID will be resolved by
-
imu_frame_id
: name of the ROS tf frame for the IMU, placed in the header of published IMU message- default:
imu
- default:
-
poi_frame_id
: name of the ROS tf frame for the POI, placed in the child frame_id of localization ifins_use_poi
is set totrue
.- default:
base_link
- default:
-
vsm_frame_id
: name of the ROS tf frame for the velocity sensor.- default:
vsm
- default:
-
aux1_frame_id
: name of the ROS tf frame for the aux1 antenna.- default:
aux1
- default:
-
vehicle_frame_id
: name of the ROS tf frame for the vehicle. Default is the same aspoi_frame_id
but may be set otherwise.- default:
base_link
- default:
-
local_frame_id
: name of the ROS tf frame for the local frame.- default:
odom
- default:
-
insert_local_frame
: Wether to insert a local frame to published tf according to ROS REP 105. The transform from the local frame specified bylocal_frame_id
to the vehicle frame specified byvehicle_frame_id
has to be provided, e.g. by odometry. Insertion of the local frame means the transform between local frame and global frame is published instead of transform between vehicle frame and global frame.- default:
false
- default:
-
get_spatial_config_from_tf
: wether to get the spatial config via tf with the above mentioned frame ids. This will override spatial settings of the config file. For receiver typeins
withmulti_antenna
set totrue
all frames have to be provided, withmulti_antenna
set tofalse
,aux1_frame_id
is not necessary. For typegnss
with dual-antenna setup onlyframe_id
,aux1_frame_id
, andpoi_frame_id
are needed. For single-antennagnss
no frames are needed. Keep in mind that tf has a tree structure. Thus,poi_frame_id
is the base for all mentioned frames.- default:
false
- default:
-
use_ros_axis_orientation
Wether to use ROS axis orientations according to ROS REP 103 for body related frames and geographic frames. Body frame directions affect INS lever arms and IMU orientation setup parameters. Geographic frame directions affect orientation Euler angles for INS+GNSS and attitude of dual-antenna GNSS. Ifuse_ros_axis_orientation
is set totrue
, the driver converts between the NED convention (Septentrio: yaw = 0 is north, positive clockwise), and ENU convention (ROS: yaw = 0 is east, positive counterclockwise). There is no conversion when setting this parameter tofalse
and the angles will be consistent with the web GUI in this case.- If set to
false
Septentrios definition is used, i.e., front-right-down body related frames and NED (north-east-down) for orientation frames. - If set to
true
ROS definition is used, i.e., front-left-up body related frames and ENU (east-north-up) for orientation frames. - default:
true
- If set to
UTM zone locking
+ lock_utm_zone
: wether the UTM zone of the initial localization is locked, i.e., this zone is kept even if a zone transition would occur.
+ default: true
Datum
-
datum
: With this command, the datum the coordinates should refer to is selected. With setting it toDefault
, the datum depends on the positioning mode, e.g.WGS84
for standalone positioning.- Since the standardized GGA message does only provide the orthometric height (= MSL height = distance from Earth's surface to geoid) and the geoid undulation (distance from geoid to ellipsoid) for which non-WGS84 datums cannot be specified, it does not affect the GGA message.
- default:
Default
POI-ARP Offset
+ `poi_to_arp`: offsets of the main GNSS antenna reference point (ARP) with respect to the point of interest (POI = marker). Use for static receivers only.
+ The parameters `delta_e`, `delta_n` and `delta_u` are the offsets in the East, North and Up (ENU) directions respectively, expressed in meters.
+ All absolute positions reported by the receiver are POI positions, obtained by subtracting this offset from the ARP. The purpose is to take into account the fact that the antenna may not be located directly on the surveying POI.
+ default: `0.0`, `0.0` and `0.0`
Antenna Attitude Offset
+ `att_offset`: Angular offset between two antennas (Main and Aux) and vehicle frame
+ `heading`: The perpendicular (azimuth) axis can be compensated for by adjusting the `heading` parameter
+ `pitch`: Vertical (elevation) offset can be compensated for by adjusting the `pitch` parameter
+ default: `0.0`, `0.0` (degrees)
Antenna Specs
-
ant_type
: type of your main GNSS antenna- For best positional accuracy, it is recommended to select a type from the list returned by the command
lstAntennaInfo, Overview
. This is the list of antennas for which the receiver can compensate for phase center variation. - By default and if
ant_type
does not match any entry in the list returned bylstAntennaInfo, Overview
, the receiver will assume that the phase center variation is zero at all elevations and frequency bands, and the position will not be as accurate. - default:
Unknown
- For best positional accuracy, it is recommended to select a type from the list returned by the command
-
ant_serial_nr
: serial number of your main GNSS antenna -
ant_aux1_type
andant_aux1_serial_nr
: same for Aux1 antenna
Leap Seconds
-
leap_seconds
: Leap seconds are automatically gathered from the receiver via the SBF blockReceiverTime
. If a log file is used for simulation and this block was not recorded, the number of leap seconds that have been inserted up until the point of ROSaic usage can be set by this parameter.- At the time of writing the code (2020), the GPS time, which is unaffected by leap seconds, was ahead of UTC time by 18 leap seconds. Adapt the
leap_seconds
parameter accordingly as soon as the next leap second is inserted into the UTC time or in case you are using ROSaic for the purpose of simulations.
- At the time of writing the code (2020), the GPS time, which is unaffected by leap seconds, was ahead of UTC time by 18 leap seconds. Adapt the
Polling Periods
-
polling_period.pvt
: desired period in milliseconds between the polling of two consecutivePVTGeodetic
,PosCovGeodetic
,PVTCartesian
andPosCovCartesian
blocks and - if published - between the publishing of two of the corresponding ROS messages (e.g.septentrio_gnss_driver/PVTGeodetic.msg
). Consult firmware manual for allowed periods. If the period is set to a lower value than the receiver is capable of, it will be published with the next higher period. If set to0
, the SBF blocks are output at their natural renewal rate (OnChange
).- Clearly, the publishing of composite ROS messages such as
sensor_msgs/NavSatFix.msg
orgps_msgs/GPSFix.msg
is triggered by the SBF block that arrives last among the blocks of the current epoch. - default:
500
(2 Hz)
- Clearly, the publishing of composite ROS messages such as
-
polling_period.rest
: desired period in milliseconds between the polling of all other SBF blocks and NMEA sentences not addressed by the previous parameter, and - if published - between the publishing of all other ROS messages- default:
500
(2 Hz)
- default:
Time Systems
-
use_gnss_time
:true
if the ROS message headers' unix epoch time field shall be constructed from the TOW/WNC (in the SBF case) and UTC (in the NMEA case) data,false
if those times shall be taken by the driver from ROS time. Ifuse_gnss_time
is set totrue
, it is imperative that the ROS system is synchronized to an NTP time server or PTP clock either via internet or ideally via the Septentrio receiver since the latter serves as a Stratum 1 time server not dependent on an internet connection. If this is not followed, the time stamps may drift apart!- default:
false
- default:
-
ntp_server
: Wether the NTP server shall be activated.- default:
false
- default:
-
ptp_server_clock
: Wether the PTP server slcok hall be activated.- default:
false
- default:
-
latency_compensation
: Rx reports processing latency in PVT and INS blocks. If set totrue
this latency is subtracted from ROS timestamps in related blocks (i.e.,use_gnss_time
set tofalse
). Related blocks are INS, PVT, Covariances, and BaseVectors. In case ofuse_gnss_time
set totrue
, the latency is already compensated within the RX and included in the reported timestamps.- default:
false
- default:
RTK corrections
-
rtk_settings
: determines RTK connection parameters- There are multiple possibilities to feed RTK corrections to the Rx. They may be set simultaneously and the Rx will choose the nearest source.
- a)
ntrip_#
if the Rx has internet access and is able to receieve NTRIP streams from a caster. Up to three NTRIP connections are possible. - b)
ip_server_#
if corrections are to be receieved via TCP/IP for example overData Link
from Septentrio's RxTools is installed on a computer. Up to five IP server connections are possible. - c)
serial_#
if corrections are to be receieved via a serial port for example over radio link from a local RTK base or overData Link
from Septentrio's RxTools installed on a computer. Up to five serial connections are possible.
- a)
-
ntrip_#
: for receiving corretions from an NTRIP caster (#
is from 1 ... 3).-
id
: NTRIP connectionNTR1
,NTR2
, orNTR3
. - default: ""
-
caster
: is the hostname or IP address of the NTRIP caster to connect to. - default: ""
-
caster_port
: IP port of the NTRIP caster. - default: 2021
-
username
: user name for the NTRIP caster. - default: ""
-
pasword
: password for the NTRIP caster. The receiver encrypts the password so that it cannot be read back with the command "getNtripSettings". - default: ""
-
mountpoint
: mount point of the NTRP caster to be used. - default: ""
-
version
: argument specifies which version of the NTRIP protocol to use (v1
orv2
). - default: "v2"
-
tls
: determines wether to use TLS. - default: false
-
fingerprint
: fingerprint to be used if the certificate is self-signed. If the caster’s certificate is known by a publicly-trusted certification authority, fingerprint should be left empty. - default: ""
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: "auto"
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver automatically sends GGA messages if requested by the caster. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
-
ip_server_#
: for receiving corretions via TCP/IP (#
is from 1 ... 5).-
id
: specifies the IP serverIPS1
,IPS2
,IPS3
,IPS4
, orIPS5
. Note that ROSaic will send GGA messages on this connection ifsend_gga
is set, such that in theData Link
application ofRxTools
one just needs to set up a TCP client to the host name as found in the ROSaic parameterdevice
with the port as found inport
. If the latter connection were connection 1 onData Link
, then connection 2 would set up an NTRIP client connecting to the NTRIP caster as specified in the above parameters in order to forward the corrections from connection 2 to connection 1. - default: ""
-
port
: its port number of the connection that ROSaic establishes on the receiver. When selecting a port number, make sure to avoid conflicts with other services. - default: 0
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: ""
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver sends withsec1
. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
-
serial_#
: for receiving corretions via serial connection (#
is from 1 ... 5).-
port
: Serial connectionCOM1
,COM2
,COM3
,USB1
, orUSB2
on which corrections could be forwarded to the Rx from a serially connected radio link modem or viaData Link
for example. - default: ""
-
baud_rate
: sets the baud rate of this port for genuine serial ports, i.e., not relevant for USB connection. - default: 115200
-
rtk_standard
: determines the RTK standard, options areauto
,RTCMv2
,RTCMv3
, orCMRv2
. - default: "auto"
-
send_gga
: specifies whether or not to send NMEA GGA messages to the NTRIP caster, and at which rate. It must be one ofauto
,off
,sec1
,sec5
,sec10
orsec60
. Inauto
mode, the receiver sends withsec1
. - default: "auto"
-
keep_open
: determines wether this connection shall be kept open. If set totrue
the Rx will still be able to receive RTK corrections to improve precision after driver is shut down. - default: true
-
- There are multiple possibilities to feed RTK corrections to the Rx. They may be set simultaneously and the Rx will choose the nearest source.
INS Specs
+ `ins_spatial_config`: Spatial configuration of INS/IMU. Coordinates according to vehicle related frame directions chosen by `use_ros_axis_orientation` (front-left-up if `true` and front-right-down if `false`).
+ `imu_orientation`: IMU sensor orientation
+ Parameters `theta_x`, `theta_y` and `theta_z` are used to determine the sensor orientation with respect to the vehicle frame. Positive angles correspond to a right-handed (clockwise) rotation of the IMU with respect to its nominal orientation (see below). The order of the rotations is as follows: `theta_z` first, then `theta_y`, then `theta_x`.
+ The nominal orientation is where the IMU is upside down and with the `X axis` marked on the receiver pointing to the front of the vehicle. By contrast, for `use_ros_axis_orientation: true`, nominal orientation is where the `Z axis` of the IMU is pointing upwards and also with the `X axis` marked on the receiver pointing to the front of the vehicle.
+ default: `0.0`, `0.0`, `0.0` (degrees)
+ `poi_lever_arm`: The lever arm from the IMU reference point to a user-defined POI
+ Parameters `delta_x`,`delta_y` and `delta_z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `ant_lever_arm`: The lever arm from the IMU reference point to the main GNSS antenna
+ The parameters `x`,`y` and `z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `vsm_lever_arm`: The lever arm from the IMU reference point to the velocity sensor
+ The parameters `vsm_x`,`vsm_y` and `vsm_z` refer to the vehicle reference frame
+ default: `0.0`, `0.0`, `0.0` (meters)
+ `ins_initial_heading`: How the receiver obtains the initial INS/GNSS integrated heading during the alignment phase
+ In case it is `auto`, the initial integrated heading is determined from GNSS measurements.
+ In case it is `stored`, the last known heading when the vehicle stopped before switching off the receiver is used as initial heading. Use if vehicle does not move when the receiver is switched off.
+ default: `auto`
+ `ins_std_dev_mask`: Maximum accepted error
+ `att_std_dev`: Configures an output limit on standard deviation of the attitude angles (max error accepted: 5 degrees)
+ `pos_std_dev`: Configures an output limit on standard deviation of the position (max error accepted: 100 meters)
+ default: `5` degrees, `10` meters
+ `ins_use_poi`: Whether or not to use the POI defined in `ins_spatial_config.poi_lever_arm`
+ If true, the point at which the INS navigation solution (e.g. in `insnavgeod` ROS topic) is calculated will be the POI as defined above (`poi_frame_id`), otherwise it'll be the main GNSS antenna (`frame_id`). Has to be set to `true` if tf shall be published.
+ default: `true`
+ `ins_vsm`: Configuration of the velocity sensor measurements. IP server may be used to receive velocity information from ROS or from an external device. Serial connection may be used to receive velocity information from an external device only.
+ `ros`: VSM info received from ROS msgs
+ `source`: Specifies which ROS message type shall be used, options are `odometry` or `twist`. Accordingly, a subscriber is established of the type [`nav_msgs/Odometry.msg`](https://docs.ros2.org/foxy/api/nav_msgs/msg/Odometry.html) or [`geometry_msgs/TwistWithCovarianceStamped.msg`](https://docs.ros2.org/foxy/api/geometry_msgs/msg/TwistWithCovarianceStamped.html) listening on the topics `odometry_vsm` or `twist_vsm` respectively. Only linear velocities are evaluated. Measurements have to be with respect to the frame aligned with the vehicle and defined by `ins_spatial_config.vsm_lever_arm` or tf-frame `vsm_frame_id`, see also comment in [`nav_msgs/Odometry.msg`](https://docs.ros2.org/foxy/api/nav_msgs/msg/Odometry.html) that twist should be specified in `child_frame_id`.
+ default: ""
+ `config`: Defines which measurements belonging to the respective axes are forwarded to the INS. In addition, non-holonomic constraints may be introduced for directions known to be restricted in movement. For example, a vehicle with Ackermann steering is limited in its sidewards and upwards movement. So, even if only motion in x-direction may be measured, zero-velocities for y and z may be sent. Only has to be set if `ins_vsm.ros.source`is set to `odometry` or `twist`.
+ default: []
+ `variances_by_parameter`: Wether variances shall be entered by parameter `ins_vsm.ros.variances` or the values from inside the ROS messages are used. Only has to be set if `ins_vsm.source`is set to `odometry` or `twist`.
+ default: false
+ `variances`: Variances of the respective axes. Only have to be set if `ins_vsm.variances_by_parameter` is set to `true`. Values must be > 0.0, else measurements cannot not be used.
+ default: []
+ `ip_server`:
+ `id`: IP server to receive the VSM info (e.g. `IPS1`). If a TCP stream device (`device.stream_device.tcp`) is set up, this device may be used here, i.e, `id` my be set to the same.
+ default: "IPS5"
+ `port`: TCP port to receive the VSM info. When selecting a port number, make sure to avoid conflicts with other services.
+ default: 24786
+ `keep_open` determines wether this connections to receive VSM shall be kept open on driver shutdown. If set to `true` the Rx will still be able to use external VSM info to improve its localization.
+ default: `true`
+ `serial`:
+ `port`: Serial port to receive the VSM info.
+ default: ""
+ `baud_rate`: Baud rate of the serial port to receive the VSM info.
+ default: 115200
+ `keep_open` determines wether this connections to receive VSM shall be kept open on driver shutdown. If set to `true` the Rx will still be able to use external VSM info to improve its localization.
+ default: `true`
Logger
+ `activate_debug_log`: `true` if ROS logger level shall be set to debug.
-
Parameters Configuring (Non-)Publishing of ROS Messages
NMEA/SBF Messages to be Published
-
publish.auto_publish
:true
to automatically publish messages for which SBF blocks and NMEA sentences are available. Only applicable ifconigure_rx
isfalse
. Iftf_ecef
shall be published, this must be explicitily set to true, else tf in UTM is published if available. -
publish.publish_only_valid
:true
to publish SBF blocks only if timestamp (TOW) is valid. -
publish.gpgga
:true
to publishnmea_msgs/GPGGA.msg
messages into the topic/gpgga
-
publish.gprmc
:true
to publishnmea_msgs/GPRMC.msg
messages into the topic/gprmc
-
publish.gpgsa
:true
to publishnmea_msgs/GPGSA.msg
messages into the topic/gpgsa
-
publish.gpgsv
:true
to publishnmea_msgs/GPGSV.msg
messages into the topic/gpgsv
-
publish.measepoch
:true
to publishseptentrio_gnss_driver/MeasEpoch.msg
messages into the topic/measepoch
-
publish.galauthstatus
:true
to publishseptentrio_gnss_driver/GALAuthStatus.msg
messages into the topic/galauthstatus
and corresponding/diganostics
-
publish.aimplusstatus
:true
to publishseptentrio_gnss_driver/RFStatus.msg
messages into the topic/rfstatus
,septentrio_gnss_driver/AIMPlusStatus.msg
messages into/aimplusstatus
and corresponding/diganostics
. Some information is only available with active OSNMA. -
publish.pvtcartesian
:true
to publishseptentrio_gnss_driver/PVTCartesian.msg
messages into the topic/pvtcartesian
-
publish.pvtgeodetic
:true
to publishseptentrio_gnss_driver/PVTGeodetic.msg
messages into the topic/pvtgeodetic
-
publish.basevectorcart
:true
to publishseptentrio_gnss_driver/BaseVectorCart.msg
messages into the topic/basevectorcart
-
publish.basevectorgeod
:true
to publishseptentrio_gnss_driver/BaseVectorGeod.msg
messages into the topic/basevectorgeod
-
publish.poscovcartesian
:true
to publishseptentrio_gnss_driver/PosCovCartesian.msg
messages into the topic/poscovcartesian
-
publish.poscovgeodetic
:true
to publishseptentrio_gnss_driver/PosCovGeodetic.msg
messages into the topic/poscovgeodetic
-
publish.velcovcartesian
:true
to publishseptentrio_gnss_driver/VelCovCartesian.msg
messages into the topic/velcovcartesian
-
publish.velcovgeodetic
:true
to publishseptentrio_gnss_driver/VelCovGeodetic.msg
messages into the topic/velcovgeodetic
-
publish.atteuler
:true
to publishseptentrio_gnss_driver/AttEuler.msg
messages into the topic/atteuler
-
publish.attcoveuler
:true
to publishseptentrio_gnss_driver/AttCovEuler.msg
messages into the topic/attcoveuler
-
publish.gpst
:true
to publishsensor_msgs/TimeReference.msg
messages into the topic/gpst
-
publish.navsatfix
:true
to publishsensor_msgs/NavSatFix.msg
messages into the topic/navsatfix
-
publish.gpsfix
:true
to publishgps_msgs/GPSFix.msg
messages into the topic/gpsfix
-
publish.pose
:true
to publishgeometry_msgs/PoseWithCovarianceStamped.msg
messages into the topic/pose
-
publish.twist
:true
to publishgeometry_msgs/TwistWithCovarianceStamped.msg
messages into the topics/twist
and/twist_ins
respectively -
publish.diagnostics
:true
to publishdiagnostic_msgs/DiagnosticArray.msg
messages into the topic/diagnostics
-
publish.insnavcart
:true
to publishseptentrio_gnss_driver/INSNavCart.msg
message into the topic/insnavcart
-
publish.insnavgeod
:true
to publishseptentrio_gnss_driver/INSNavGeod.msg
message into the topic/insnavgeod
-
publish.extsensormeas
:true
to publishseptentrio_gnss_driver/ExtSensorMeas.msg
message into the topic/extsensormeas
-
publish.imusetup
:true
to publishseptentrio_gnss_driver/IMUSetup.msg
message into the topic/imusetup
-
publish.velsensorsetup
:true
to publishseptentrio_gnss_driver/VelSensorSetup.msgs
message into the topic/velsensorsetup
-
publish.exteventinsnavcart
:true
to publishseptentrio_gnss_driver/ExtEventINSNavCart.msgs
message into the topic/exteventinsnavcart
-
publish.exteventinsnavgeod
:true
to publishseptentrio_gnss_driver/ExtEventINSNavGeod.msgs
message into the topic/exteventinsnavgeod
-
publish.imu
:true
to publishsensor_msgs/Imu.msg
message into the topic/imu
-
publish.localization
:true
to publishnav_msgs/Odometry.msg
message into the topic/localization
-
publish.tf
:true
to broadcast tf of localization.ins_use_poi
must also be set to true to publish tf. Note that only one ofpublish.tf
orpublish.tf_ecef
may betrue
.
-
publish.localization_ecef
:true
to publishnav_msgs/Odometry.msg
message into the topic/localization
related to ECEF frame. -
publish.tf_ecef
:true
to broadcast tf of localization related to ECEF frame.ins_use_poi
must also be set to true to publish tf. Note that only one ofpublish.tf
orpublish.tf_ecef
may betrue
.
-
ROS Topic Publications
A selection of NMEA sentences, the majority being standardized sentences, and proprietary SBF blocks is translated into ROS messages, partly generic and partly custom, and can be published at the discretion of the user into the following ROS topics. All published ROS messages, even custom ones, start with a ROS generic header std_msgs/Header.msg
, which includes the receiver time stamp as well as the frame ID, the latter being specified in the ROS parameter frame_id
.
Available ROS Topics
-
/gpgga
: publishesnmea_msgs/Gpgga.msg
- converted from the NMEA sentence GGA. -
/gprmc
: publishesnmea_msgs/Gprmc.msg
- converted from the NMEA sentence RMC. -
/gpgsa
: publishesnmea_msgs/Gpgsa.msg
- converted from the NMEA sentence GSA. -
/gpgsv
: publishesnmea_msgs/Gpgsv.msg
- converted from the NMEA sentence GSV. -
/measepoch
: publishes custom ROS messageseptentrio_gnss_driver/MeasEpoch.msg
, corresponding to the SBF blockMeasEpoch
.
-
/galauthstatus
: publishes custom ROS messageseptentrio_gnss_driver/GALAuthStatus.msg
, corresponding to the SBF blockGALAuthStatus
. -
/rfstatus
: publishes custom ROS messageseptentrio_gnss_driver/RFStatus.msg
, compiled from the SBF blockRFStatus
. -
/aimplusstatus
: publishes custom ROS messageseptentrio_gnss_driver/AIMPlusStatus.msg
, reporting status of AIM+. Converted from SBF blocksRFStatus
and optionallyGALAuthStatus
. For the latter OSNMA has to be activated. -
/pvtcartesian
: publishes custom ROS messageseptentrio_gnss_driver/PVTCartesian.msg
, corresponding to the SBF blockPVTCartesian
(GNSS case) orINSNavGeod
(INS case). -
/pvtgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/PVTGeodetic.msg
, corresponding to the SBF blockPVTGeodetic
(GNSS case) orINSNavGeod
(INS case). -
/basevectorcart
: publishes custom ROS messageseptentrio_gnss_driver/BaseVectorCart.msg
, corresponding to the SBF blockBaseVectorCart
. -
/basevectorgeod
: publishes custom ROS messageseptentrio_gnss_driver/BaseVectorGeod.msg
, corresponding to the SBF blockBaseVectorGeod
. -
/poscovcartesian
: publishes custom ROS messageseptentrio_gnss_driver/PosCovCartesian.msg
, corresponding to SBF blockPosCovCartesian
(GNSS case) orINSNavGeod
(INS case). -
/poscovgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/PosCovGeodetic.msg
, corresponding to SBF blockPosCovGeodetic
(GNSS case) orINSNavGeod
(INS case). -
/velcovcartesian
: publishes custom ROS messageseptentrio_gnss_driver/VelCovCartesian.msg
, corresponding to SBF blockVelCovCartesian
(GNSS case). -
/velcovgeodetic
: publishes custom ROS messageseptentrio_gnss_driver/VelCovGeodetic.msg
, corresponding to SBF blockVelCovGeodetic
(GNSS case). -
/atteuler
: publishes custom ROS messageseptentrio_gnss_driver/AttEuler.msg
, corresponding to SBF blockAttEuler
. -
/attcoveuler
: publishes custom ROS messageseptentrio_gnss_driver/AttCovEuler.msg
, corresponding to the SBF blockAttCovEuler
. -
/gpst
(for GPS Time): publishes generic ROS messagesensor_msgs/TimeReference.msg
, converted from thePVTGeodetic
(GNSS case) orINSNavGeod
(INS case) block's GPS time information, stored in its block header. -
/navsatfix
: publishes generic ROS messagesensor_msgs/NavSatFix.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
(GNSS case) orINSNavGeod
(INS case)- The ROS message
sensor_msgs/NavSatFix.msg
can be fed directly into thenavsat_transform_node
of the ROS navigation stack.
- The ROS message
-
/gpsfix
: publishes generic ROS messagegps_msgs/GPSFix.msg
, which is much more detailed thansensor_msgs/NavSatFix.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
,ChannelStatus
,MeasEpoch
,AttEuler
,AttCovEuler
,VelCovGeodetic
,DOP
(GNSS case) orINSNavGeod
,ChannelStatus
,MeasEpoch
,DOP
(INS case). In order to publish heading information, the field dip is diverted from its intended meaning an populated with the heading angle and err_dip with its uncertainty.- INS case: Beware, in order to allow a high update rate,
ChannelStatus
,MeasEpoch
, andDOP
are not time aligned, i.e., they might contain outdated information.
- INS case: Beware, in order to allow a high update rate,
-
/pose
: publishes generic ROS messagegeometry_msgs/PoseWithCovarianceStamped.msg
, converted from the SBF blocksPVTGeodetic
,PosCovGeodetic
,AttEuler
,AttCovEuler
(GNSS case) orINSNavGeod
(INS case).- Note that GNSS provides absolute positioning, while robots are often localized within a local level cartesian frame. The pose field of this ROS message contains position with respect to the absolute ENU frame (longitude, latitude, height), i.e. not a cartesian frame, while the orientation is with respect to a vehicle-fixed (e.g. for mosaic-x5 in moving base mode via the command
setAttitudeOffset
, ...) !local! NED frame or ENU frame ifuse_ros_axis_directions
is settrue
. Thus the orientation is !not! given with respect to the same frame as the position is given in. The cross-covariances are hence set to 0.
- Note that GNSS provides absolute positioning, while robots are often localized within a local level cartesian frame. The pose field of this ROS message contains position with respect to the absolute ENU frame (longitude, latitude, height), i.e. not a cartesian frame, while the orientation is with respect to a vehicle-fixed (e.g. for mosaic-x5 in moving base mode via the command
-
/twist
: publishes generic ROS messagegeometry_msgs/TwistWithCovarianceStamped.msg
, converted from the SBF blocksPVTGeodetic
andVelCovGeodetic
. -
/twist_ins
: publishes generic ROS messagegeometry_msgs/TwistWithCovarianceStamped.msg
, converted from SBF blockINSNavGeod
. -
/insnavcart
: publishes custom ROS messageseptentrio_gnss_driver/INSNavCart.msg
, corresponding to SBF blockINSNavCart
-
/insnavgeod
: publishes custom ROS messageseptentrio_gnss_driver/INSNavGeod.msg
, corresponding to SBF blockINSNavGeod
-
/extsensormeas
: publishes custom ROS messageseptentrio_gnss_driver/ExtSensorMeas.msg
, corresponding to SBF blockExtSensorMeas
. -
/imusetup
: publishes custom ROS messageseptentrio_gnss_driver/IMUSetup.msg
, corresponding to SBF blockIMUSetup
. -
/velsensorsetup
: publishes custom ROS messageseptentrio_gnss_driver/VelSensorSetup.msg
corresponding to SBF blockVelSensorSetup
. -
/exteventinsnavcart
: publishes custom ROS messageseptentrio_gnss_driver/INSNavCart.msg
, corresponding to SBF blockExtEventINSNavCart
. -
/exteventinsnavgeod
: publishes custom ROS messageseptentrio_gnss_driver/INSNavGeod.msg
, corresponding to SBF blockExtEventINSNavGeod
. -
/diagnostics
: accepts generic ROS messagediagnostic_msgs/DiagnosticArray.msg
, converted from the SBF blocksQualityInd
,ReceiverStatus
andReceiverSetup
-
/imu
: accepts generic ROS messagesensor_msgs/Imu.msg
, converted from the SBF blocksExtSensorMeas
andINSNavGeod
.- The ROS message
sensor_msgs/Imu.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
-
/localization
: accepts generic ROS messagenav_msgs/Odometry.msg
, converted from the SBF blockINSNavGeod
and transformed to UTM.- The ROS message
nav_msgs/Odometry.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message
-
/localization_ecef
: accepts generic ROS messagenav_msgs/Odometry.msg
, converted from the SBF blocksINSNavCart
andINSNavGeod
.- The ROS message
nav_msgs/Odometry.msg
can be fed directly into therobot_localization
of the ROS navigation stack. Note thatuse_ros_axis_orientation
should be set totrue
to adhere to the ENU convention.
- The ROS message